
Introduction to TouchDesigner 099

sponsored by nVoid

Introduction to TouchDesigner 099

sponsored by nVoid

This book is for sale at http://leanpub.com/introductiontotouchdesigner

This version was published on 2019-01-09

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2018 - 2019 sponsored by nVoid

http://leanpub.com/introductiontotouchdesigner
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction . i
Foreword . i
Foreword by Author . i
What is TouchDesigner? . ii
Accessing the book . iii
Compiling the book . iv
Attribution and Licensing . iv

1 Basics . 1
1.1 Signal Flow and Wiring . 1
1.2 Creating Operators . 3
1.3 Mouse and Keyboard Navigation . 6
1.4 Networks and Paths . 7
1.5 Using an External Text Editor . 8
1.6 Help . 9

2 User Interface . 10
2.1 Parameter Window . 10
2.2 Parameters . 12
2.3 Transport Controls . 16
2.4 Timeline Settings . 17
2.5 Panes . 18
2.6 Palette Browser . 20
2.7 Search Dialog . 22
2.8 Realtime Flag . 23
2.9 Useful Shortcuts . 24

3 TOPs . 25
3.1 Introduction . 25
3.2 Movie In TOP . 26
3.3 Preloading Movies . 27
3.4 Null TOPs and Select TOPs . 28
3.5 Codecs . 29

4 CHOPs . 31

CONTENTS

4.1 Introduction . 31
4.2 Communication Methods . 32
4.3 Audio Inputs and Outputs . 33
4.4 Sample Rates . 34
4.5 Time Slicing . 36
4.6 Common Channel Operators . 38

5 DATs . 46
5.1 Introduction . 46
5.2 Communication Methods . 47

6 SOPs . 48
6.1 Introduction . 48
6.2 Rendering . 49

7 COMPs . 53
7.1 Introduction . 53
7.2 Window COMP . 54
7.3 User Interface Components . 55

8 MATs . 56
8.1 Introduction . 56
8.2 Phong, GLSL, and Point Sprite Materials . 57
8.3 UV Maps . 58

9 Python . 61
9.1 Introduction . 61
9.2 Textport . 62

10 Outputting Content for Deployment and Performance . 73
10.1 Perform Mode . 73
10.2 Performing with the Network Editor . 74
10.3 Creating an Output Raster . 76
10.4 Displays, Tearing, and Stuttering . 79
10.5 Edge Blending . 82

11 Optimization . 88
11.1 Introduction . 88
11.2 Finding the Bottleneck . 89
11.3 Using Performance Monitor . 91
11.4 Operator Cooking . 95
11.5 Resolution . 98
11.6 GPU Memory Fragmentation . 99
11.7 Windows System Processes . 102

CONTENTS

12 GLSL . 103
12.1 Introduction . 103
12.2 Types of Shaders and Rendering Pipeline . 104
12.3 Debugging . 105
12.4 Shaders in 3D . 106
12.5 Shaders in 2D . 112
12.6 Importing Shaders from Shadertoy . 116
12.7 GPU Particle Systems . 133
12.7 What Next? . 151

Credits . 152

Introduction
Foreword

Between the artist and the tool are countless techniques and bits of know-how that contribute to the
artist becoming more fluid and well-equipped for the challenges of production. When I caught wind
of Elburz’ TouchDesigner book project, I thought, yes I’d like to know what he knows! Elburz’ deep
storage of TouchDesigner wisdom was absorbed from multiple sources - helping and conversing
with a myriad of users on the forums, red-lining on-the-job on time-critical projects, working with
Derivative using beta builds of TouchDesigner, and his purely exploratory endeavors mixed with
his side-life as a hip-hop trombonist and VJ.

The book is a good keyboard-side or bed-side companion that explores the concepts, techniques
and methodology behind TouchDesigner - something I have not had the opportunity to personally
present before and am very happy Elburz has presented here. So build your chopswith these treats - It
can be read end-to-end or by randomly flipping through pages, as I found myself doing - discovering
gems of information and insights throughout.

Many thanks to Elburz for this initiative to enrich the TouchDesigner community. I’m sure it will
trigger a great chain reaction.

Greg Hermanovic Founder Derivative

Foreword by Author

The purpose of this book is two-fold:

• to teach the fundamentals of TouchDesigner 088
• to create a community-driven resource for beginners

The first purpose is straightforward. We will look at various UI elements, discuss Operators
and Operator families, explore logical workflows, Network optimizations, performance interfaces,
display management, and etc. TouchDesigner’s core elements will be explained and demonstrated,
and many common problems will be pre-emptively dealt with.

After the written portion, we will learn how to approach solving a problem with example projects
and video tutorials at the end of the book. These lessons will be practical in that we will assemble a
few projects and useful modules from the ground up.

Introduction ii

The second purpose of this book is slightly more asking of the community. We really believe in the
community, so instead of selling this book, we wanted everyone to be able to access it for free (text,
video, and example files). We wanted to take this idea a step further, and not only allow free access
to the book’s contents, but also allow free access to the book’s building blocks.

What this means is that anyone can feel free to add, comment, change, mark up, delete, or increment
upon the resources in this book. All of the book has been completely written using LaTeX, and the
code to compile the book, project files, examples, diagrams, and videos, and whatever else ends up
within it, will all be hosted on GitHub, and will be free (under a Creative Commons license) for
anyone to download, share, and build upon.

For quality control purposes, everyone will be able to branch the repository, but we will review
all changes before integrating updates back into a main branch. Everyone who contributes will be
thanked and added to the ‘Credits’ portion of the book. This way, a new user only has to look for a
single PDF, or download link, to receive the communities most up-to-date knowledge.

We really hope that the community engages with this and helps create the ultimate how-to resource
for beginners!

As of the initial writing, knowing what this book is will be as important as knowing what this book
is not. This book is not an Operator reference manual. We will not cover every parameter or use
of every Operator. This book is not meant to replace the Derivative Wiki as the main reference, we
will only use and learn about what we need. This book is not meant to replace the forum’s wealth
of helpful users and components.

In the end, this resource is a tribute to many TouchDesigner programmers and Derivative staff who,
whether on the forum, or in real-life, have helped all of us get where we are. We hope that this
tradition will continue as long as TouchDesigner does.

Elburz Sorkhabi & nVoid Art-Tech Limited

What is TouchDesigner?

This is a question many users spend time trying to answer when starting out. It can be surprising
how long it takes to create and perform simple tasks. It can be surprising that a good amount
of time is spent building functionality that is already native to other software packages. So what
is TouchDesigner? The answer is simple: TouchDesigner is a visual, node-based programming
language.

Starting from possibly the most important aspect of the description, TouchDesigner is a program-
ming language. TouchDesigner isn’t an application that is ready on start to perform actions that
may seem simple in other applications. TouchDesigner is an environment with extreme depth, and
many potential pitfalls. With some practice and time, many things can be created quickly as theyre
required. With the book’s goal to create re-useable modules, the speed at which a blank canvas can
become a finished project will be greatly increased. This doesn’t negate the fact that TouchDesigner
is still a programming language. Many tasks will still require due diligence in regards to time and

Introduction iii

effort. Many will require quite a bit of head-scratching, and all of them will require some basic
problem-solving skills.

The second aspect of the description is that TouchDesigner is node-based. This mean that instead
of opening a text document and typing line after line of code, TouchDesigner’s graphical interface
is used to make applications out of nodes. Each node, or Operator in TouchDesigner, performs a
specific, small, and granular action. To perform complex tasks, a handful of nodes will work together.
To send information between these nodes, their inputs and outputs are wired together. There are
many node-based programming languages in existence, such as Cycling 74’s Max/MSP, but what
sets TouchDesigner apart is it’s visual nature.

Everything in TouchDesigner has a visual counterpart. All the Operators have viewers. Everything,
whether it be text, control data, audio, videos, and more, is visualized through each and every
operation that is performed. This is unlike any traditional programming, and even node-based,
language, but it is what makes TouchDesigner a fantastic environment to work with. Learning how
to do many complex tasks is greatly simplified by the ability to visualize the steps involved, every
step of the way.

Accessing the book

There are multiple ways to access an Introduction to TouchDesigner 088. Since converting the book
to using Gitbooks, you may now download the PDF, epub, or mobi version of the book from the link
below:

https://www.gitbook.com/book/nvoid/introduction-to-touchdesigner/details

The example files are found in the TouchDesigner Example Files folder of the GitHub repo, which
can be cloned or downloaded here:

https://github.com/nVoid/Introduction-to-touchdesigner

The hours of HD video tutorials are available in a single Vimeo channel. All the files can be
downloaded from Vimeo for offline viewing. The link for this is below:

https://vimeo.com/channels/845218

You can also download the Markdown source code from this GitHub repo and build use the parts
separately. You are free to change, edit, add, delete, and modify the text by branching the source
files. When you are finished, submit your changes and they will be reviewed by our administration,
and merged into the main branch, at which point you will be added to the list of contributors in the
Contributors chapter of the book, along with your contributions.

For more general information about this resource, visit http://book.nvoid.com

Introduction iv

Compiling the book

Unlike the previous LaTeX version, no build environment is required to contribute to the book. You
can use plain Markdown, and when you’re done and your changes are accepted to the repository,
Gitbooks automatically takes care of creating a new web version, PDF, epub, and mobi version of
the book.

Attribution and Licensing

This resource is licensed under Creative Commons - Attribution-NonCommercial-ShareAlike-4.0
International.

Link: http://creativecommons.org/licenses/by-nc-sa/4.0/

Thank you!

1 Basics
1.1 Signal Flow and Wiring

Wiring Operators is the most basic operation in TouchDesigner. All projects are made up of nothing
more than groups of Operators wired together. Each Operator, on its own, does a very specific thing,
but when they are combined together into a â€™Networkâ€™, they can solve extremely complex
problems.

All data in TouchDesigner flows from left to right. Any inputs that an Operator has will always be
on the left side, and outputs will be on the right side. The inputs and outputs will also be ordered
first to last, going from top to bottom. In the example diagram below, follow the two signals starting
on the left. As they flow from left to right, they are composited, one over the other.

img 1.1.1

Components, interestingly, have the same data signal flow as Operators, flowing from left to right,
but they are also capable of parent and child relationships, which flow from top to bottom. The
component at the top of the signal chain is the parent, and the components below it are its children,
and below that are the childrenâ€™s children, and so on. In the example below, there is a small UI,
that is made of a few sliders. In this example, the Slider COMPs are the children of the Container
COMP, which is the parent.

1 Basics 2

img 1.1.2

1 Basics 3

1.2 Creating Operators

The OP Create Dialog can be reached in a multitude of ways. Each has a correct time and place
of usage. When creating Operators from scratch the two easiest methods are to hit ’Tab’ on the
keyboard, or to double click on the Network background.

When working with existing chains of Operators, there are two easy ways to add Operators. The
first is to right click on either the input or output of an Operator. This will add the chosen Operator,
pre-wired, directly before the input or after the output. This is especially useful as it inserts the
Operator seamlessly into a pre-existing chain.

For example, there is a Constant TOP wired to a Null TOP, and a Transform TOP needs to be added
between the two. Right clicking either the output of the Constant TOP, or the input of the Null TOP,
and selecting Transform TOP, would create a Transform TOP, that would be pre-wired in-between
the Constant TOP and Null TOP.

The second way to add an Operator to an existing chain is to middle click on the output of an
Operator. The difference is that right clicking integrates the newly created Operator into the current
Operator chain, whereas middle clicking creates a new branch in parallel to the chain of Operators.

Similar results can be achieved by right clicking on the wire itself and clicking on ’Insert Operator’
or ’Add Operator’. ’Insert Operator’ acts like right clicking an Operator’s output and integrates it
into the current Operator chain, whereas ’Add Operator’ acts like middle clicking and creates a new
branch in parallel to the chain.

In the diagram below, there is an example with a Constant TOP and a Null TOP. In the next diagram,
thewire connecting themwas right clicked and a TransformTOPwas created using ’Insert Operator’.
In the proceeding diagram, the wire connecting the Operators was right clicked and a Transform
TOP was created using ’Add Operator’. Notice how it is pre-wired in parallel to the first Transform
TOP.

img 1.2.1

1 Basics 4

img 1.2.2

img 1.2.3

There are two useful key commands when working with the OP Create Dialog: ’Control’ and ’Shift’.
Open the OP Create dialog, hold down ’Control’ on the keyboard, and then begin to select multiple
Operators in a row. Each one will be added to the Network below the last. This is useful for quickly
populating a Network with a few different Operators.

Similarly, open the OP Create dialog, press and hold the ’Shift’ key, and then begin to select multiple
Operators. This is different than above, in that the Operators will be wired together in series. This
key command can be used to quickly create small, or large, chains of pre-wired Operators.

Both of these key commands are quite powerful, but they become even more so when they are used
in tandem. For example, a project requires 3 chains of Operators. The first will consist of a Circle
TOP, connected to a Blur TOP, connected to a Null TOP. The second will consist of a Circle TOP,
connected to an Edge TOP, connected to a Noise TOP, connected to a Null TOP. The final chain will
consist of a Movie In TOP, connected to a Blur TOP, connected to a Null TOP. Let’s go through this
step by step, to demonstrate practical use of the above key commands:

1. Open the OP Create dialog
2. Press and hold down ’Shift’
3. While holding ’Shift’, click on Circle TOP, Blur TOP, then Null TOP. This will create the first

chain.
4. Release the ’Shift’ key
5. Press and hold down ’Control’. This will place the next Operator below the first Operator.

1 Basics 5

6. Holding ’Control’, click on Circle TOP
7. Release the ’Control’ key
8. Press and hold down the ’Shift’ key
9. While holding ’Shift’, click on Edge TOP, Noise TOP, and then Null TOP. This will create the

second chain
10. Release the ’Shift’ key
11. Press and hold ’Control’
12. While holding ’Control’, click on Movie In TOP.
13. Release the ’Control’ key
14. Press and hold ’Shift’
15. Click on the remaining operators: Blur TOP, and Null TOP
16. Now that all of the Operators are created, use the ’Esc’ key to close the OP Create dialog.

After closing the OP Create Dialog, all the required Operators will be wired and ready to go in the
project. These key commands have not only saved having to open and close the OP Create Dialog
for every Operator, but they’ve saved the need to manually wire them.

1 Basics 6

1.3 Mouse and Keyboard Navigation

The mouse plays a vital role in TouchDesigner programming, and a high-quality mouse is highly
recommended. The mouse is used to move around the Network and work with Operators.

To navigate around the Network, left click and drag the Network background. Left click on an
Operator to select it. Left click and drag that Operator to move it around the Network. Right click
on an Operator to reveal a menu with options that will be introduced slowly. To select and work
with more than one Operator, right click and drag the selection box around the desired Operators.
Middle click on an Operator to get more info about it. There is a UI button that displays the same
Operator info window, which is useful when using a mouse that doesn’t have a middle click button.

Left-click on the ’i’ to get more detailed information about the selected operator.

There are several key commands used to navigate TouchDesigner projects. Two of these key
commands are ’u’ and ’i’. Press ’u’ will move up one Network, and out of the current component. To
go inside of a Network or component (like a Container COMP or Base COMP), select the component
and hit ’i’.

To centralize the screen on all the Operators in a Network, use the ’h’ key on the keyboard. This
performs the ’Home’ action on the current Network.

1 Basics 7

1.4 Networks and Paths

All TouchDesigner projects are made of Networks. A Network is a group of Operators. Networks
are encapsulated inside of components, such as a Container COMP, Base COMP, Geometry COMP,
etc. Networks can be infinitely nested. The top level is called the ’root’ level. TouchDesigner system
and UI elements can be found at the ’root’ level.

Encapsulating and organizing Networks from the start of the project is a great practice to get in the
habit of. The current path is always visible in the ’Path Bar’ at the top of the ’Network Editor’.

All TouchDesigner Operators have a path. These paths are similar to Unix file paths. There are two
kinds of paths to an Operator: the ’absolute path’ and the ’relative path’. The ’absolute path’ is the
path to the Operator from the ’root’ of the project, or ’/’. The ’relative path’ is the path to an Operator
from another Operator. These paths start from the Network of the referencing Operator, instead of
starting from the ’root’.

Open example ’Paths.toe’. This example demonstrates paths. TouchDesigner will start in the ’root’
of the project where there is a Container COMP named ’network1’. Inside of ’network1’, there are
two Operators. ’rel1’ is a Text DAT with two paths in its contents. The first is an ’absolute path’.
This path starts from the ’root’, or top of the project, and travels towards the Operator. The second
path is the ’relative path’ from the current Operator to ’rel2’, which is a Text DAT inside of the
Container COMP named ’network2’. In the ’relative path’, the path travels from the current location
to the destination. To get from ’rel1’ to ’rel2’, the path only needs to travel into ’network2’, thus the
’relative path’ is ’network2/rel2’.

Notice that the viewer of ’network2’ is displaying an Operator from inside of it. This technique will
be discussed more in later examples, but what is important now is the path used. In the ’Operator
Viewer’ parameter of ’network2’, there is the path to ’./display’, where ’display’ is the name of the
Operator, and ’./’ denotes one level inside of the referencing Operator, which is ’network2’ in this
case.

Inside of ’network2’, there is a Text DAT named ’display’, whose contents are being displayed in
the Network above. The other two Text DATs have more path examples written in them. ’abs1’ is
another example of an ’absolute path’. ’rel2’ has an example of a ’relative path’ between itself and
’abs1’. It also has an example of a ’relative path’ between itself and ’rel1’ in the Network above,
where ’rel1’ is the Operator’s name, and ’../’ denotes one Network level above the current Network.
’../’ can be used in sequence to move up as high as the root, but there are more efficient ways of
making paths.

1 Basics 8

1.5 Using an External Text Editor

Small Python scripts can be created and edited inside of TouchDesigner, but as scripts grow, an
external text editor can save a lot of time and trouble.

There are a number of helpful features gained by editing scripts in an external text editor. Without
creating an extensive list, some reasons include:

1. Line numbering
2. Colour coded syntax
3. Find & Replace functionality
4. Auto-completion

These features add up to a far richer, and more efficient experience when working extensively with
Python inside of TouchDesigner.

1. Open the ’Preferences’ dialog found in the ’Edit’ menu
2. Go to the ’DATs’ preferences
3. Click the file browser icon for the ’Text Editor’ setting
4. Assign the the external editor’s executable (.exe) by selecting it and clicking ’Open’. This is

usually located in the ’Program Files’ folder
5. Click ’Accept’ on the Preferences dialog

Once the setup is complete, right click on a DAT and click the ’Edit Contents’ option. The DAT will
be opened in the program which is specified by this preference. A separate ’Table Editor’ preference
is available to set the external editor used for DATs that are tables.

Two well-respected editors that are used frequently in the TouchDesigner community, and are
crossplatform, are linked below:

Sublime Text 3 http://www.sublimetext.com/¹ Notepad++ http://notepad-plus-plus.org/²

¹http://www.sublimetext.com/
²http://notepad-plus-plus.org/

http://www.sublimetext.com/
http://notepad-plus-plus.org/
http://www.sublimetext.com/
http://notepad-plus-plus.org/

1 Basics 9

1.6 Help

If there are ever any questions about specific Operators or processes, refer to the official Derivative
Wiki. Each Operator has two shortcuts that will open its Wiki page in a new browser window. These
two buttons are located in the Parameter window, and both are represented by question marks. One
is specifically about the Operator and its use, while the other, the question mark over the Python
logo, is specifically about Python scripting with that Operator.

2 User Interface
2.1 Parameter Window

The ‘Parameter Window’ is where all an Operator’s parameters can be accessed.

There are two ways to access the ‘Parameter Window’. The first is using the ‘P’ key. This will open
a docked ‘Parameter Window’ in the top-right hand corner of the pane. This docked ‘Parameter
Window’ will display the parameters of whatever Operator is selected.

The second way to access the ‘Parameter Window’ is by right clicking on an Operator and selecting
‘Parameters…’. This will open up a floating ‘Parameter Window’ for the Operator. This method
differs from the first in that the parameters will not change if another Operator is selected. This is
useful for being able to manage the parameters of multiple Operators simultaneously.

Every Operator has a different set of parameters, but all ‘Parameter Windows’ have the same set of
options. Below is a diagram highlighting the options:

2 User Interface 11

image 2.1.1

From left to right, the options are as follows:

1. Operator Help: opens the Operator’s Wiki help page in a new browser window
2. Operator Python Help: opens the Operator’s Python Wiki help page in a new browser
3. Operator Information Dialog: displays information about the Operator’s process, similar to

middle-clicking an Operator
4. Comment: display and edit Operator comments
5. Copied Parameters: displays parameters copied via the right click menu
6. Language: choose whether the Operator will use Python or tscript as its scripting language
7. Expand/Collapse Parameters: expand or collapse all the Operator’s parameters
8. Non-default Parameters: display only parameters that have been changed from their default

values

2 User Interface 12

2.2 Parameters

Parameters can be entered in a number of ways. Depending on the situation, some parameters may
require a static value, and some may need to be driven by other values and inputs. Each parameter
has three modes. Each mode is quite different and each defines how the parameter behaves. The
three modes are:

1. Constant mode
2. Expression mode
3. Export mode

Constant mode is the default for most parameters, and is represented by a grey colour scheme in
the value field. Expression mode is used for Python, tscript, or mathematical operations and scripts.
Expression mode is represented by a dark grey and light blue colour scheme. Export mode is used
to directly reference CHOP channels. It is represented by a light green colour scheme.

Each of an Operators parameters can be independently changed between the three modes. To change
the mode of a parameter, hover the mouse over the parameter’s name. A ‘+’ sign will appear near
the parameter’s name, similarly to the diagram below.

2 User Interface 13

Once hovering over the parameter’s name, click it and it will expand, displaying more information
and options, similarly to the diagram below:

There are three main elements that are available once a parameter is expanded. The first on the
left, is the parameter’s scripting name. This scripting name is needed whenever that parameter is
referenced in any of TouchDesigner’s scripting languages. In the above diagram, the scripting name
for the Noise CHOP’s Roughness is ‘rough’. Continuing the above example, the Python script to set
the Roughness of the above Noise CHOP to ‘1’ would be:

1 op('noise1').par.rough = 1

The second element is the three coloured squares. These squares represent the different modes for
the parameter, as discussed above. Operator parameters set to Constant mode are represented by a
filled grey square. This parameter can be changed to Expression mode by clicking on the outline
of the light blue square. Once clicked, the light blue square will be filled, and the value field to the
right will also be coloured to reflect the parameter’s mode.

2 User Interface 14

To change the parameter’s mode to Export mode, a CHOP channel needs to be dragged and dropped
on the parameter, at which point it will take up Export mode’s colour scheme, and the green box
will be filled in.

2 User Interface 15

The third element of the expanded parameter is the value field. The value field displays a different
piece of information depending on the parameter mode. In Constant mode, the value field displays
the current value, and can be edited by clicking and typing in the field. In Expression mode, the
value field displays the script of Python or tscript that is being evaluated. The expression can be
edited by clicking and typing in the value field. In Export mode, the value field displays two pieces
of information separated by a colon. The text before the colon displays the path of the CHOP that is
exporting to this parameter. The text after the colon is the name of the channel being exported from
the CHOP. Because these values are being imposed by another Operator, the value field cannot be
edited while the parameter is in Export mode.

2 User Interface 16

2.3 Transport Controls

The transport bar functions similarly to the transport bars of many other applications. To go through
it quickly, from left to right the buttons do the following:

1. Resets timeline to frame 1
2. Pause the timeline
3. Play timeline in reverse
4. Play timeline forward
5. Step one frame backward
6. Step one frame forward
7. Setting ‘Range Limit’ to ‘Loop’ will continuously loop the timeline
8. Setting ‘Range Limit’ to ‘Once’ will play through the timeline and hold the last frame

The most used functions of the timeline are ‘Play’ and ‘Pause’, which can be accessed quickly by
pressing the ‘Space bar’ on the keyboard.

2 User Interface 17

2.4 Timeline Settings

Unless media or animations is locked to the timeline, the ‘Timeline settings’ won’t need to be
regularly accessed. The ‘Timeline settings’ can be found in the bottom left of the window. The
key things to know about this area are that the project’s ‘FPS’ and ‘Tempo’ can be changed here.
The project’s ‘FPS’ determines the rate at which the project will render frames. By default it is set
to 60 FPS, meaning that TouchDesigner will try to render 60 frames every second. The ‘Tempo’ will
set the BPM (beats per minute) of the project, for use by the Beat CHOP.

The ‘Timeline settings’ are use more in situations where animations and media need to be locked
to a consistent timeline. The frame controls include ‘Start’ and ‘End’, which control the start frame
and end frame of the timeline, as well as ‘RStart’ and ‘REnd’, which control the loop start and loop
end of the timeline. With these settings, it is possible to create an animation that spans the entire
timeline, which could be 4000 frames, while still leaving the option to loop a small section of the
timeline to work within.

2 User Interface 18

2.5 Panes

Using panes regularly can save a ton of timewhenmoving back and forth betweenNetworks. Having
to travel through 3 Networks to change a parameter, only to have to travel back to see the changes
is a waste of time. Panes take the current window, split it horizontally or vertically as many times
as desired. Each pane layout can be saved for later use.

The diagram above highlights the pane presets that are available by default. The presets provide
quick access to a few standard configurations of panes including split left and right, split top and
bottom, a 3 pane setup, and a 4 pane setup. Saving pane presets is as easy as clicking the ‘Add New
Layout +’ button, entering a name, and clicking ‘Ok’. Saving a layout not only saves the size and
position of the panes, but also saves each pane’s type.

Panes are able to display unique types of content, whether they are other dialogs, Networks, or
viewers. Being able to mix and match combinations of viewers and Network editors allows for a
lot of flexibility. In the diagram below, the top left pane is a Network editor. On the right-hand
side, is a Textport, and on the bottom-left, there is a Geometry Viewer. Again, saving this layout
would not only save the pane arrangement, but also the pane types. This is useful when working on
a project with a lot of different elements, where jumping between something like the setup above,
and a simple Network editor, can save quite a bit of time in the long run.

The keyboard shortcuts for working with panes are as follows:

2 User Interface 19

1. Alt + [: Vertically split current pane under mouse
2. Alt +] : Horizontally split current pane under mouse
3. Alt + Z : close pane under mouse

2 User Interface 20

2.6 Palette Browser

The Palette Browser can be thought of as a component library. The Palette Browser holds ‘.tox’ files
(or TouchDesigner Component files). These files contain a single Component Operator, that can hold
a Network of other Operators. This means that a series of frequently used Operators, UI components,
Python scripts, and more, can be created inside of a single Component Operator, saved as a ‘.tox’
file, and quickly accessed at any time in the future.

Open the Palette Browser, and look through the large number of pre-existing ‘.tox’ files that are
available. Blank projects start with the Palette Browser open by default, and docked to the left side
of the window. To open the Palette Browser as a floating window, use the keyboard command ‘Alt
+ L’. Let’s try one of the pre-built components.

Under the ‘Derivative’ section, navigate to ‘Tools’, and then finally drag and drop the ‘Blend’
component into a new project. Looking at the ‘Blend’ component’s UI, it is clear that there is quite
a bit going on inside. Before diving deeper, take a moment to connect two inputs and try the ‘Blend’
component. Activate the viewer, click on the button underneath the image to select a blend mode,
and then drag the semi-transparent handle across the image to blend between the inputs. This is a
useful tool, and all it took was a simple drag and drop from the Palette Browser!

One of the goals of this book is to create some tools that can be added to the Palette Browser, so
that they may be used regularly. There are two ways to add a component to the Palette Browser.
The first is a drag and drop method. To do so, select ‘My Components’ from the top portion of the
browser. Then drag any component from the Network and drop it into the lower portion of the
Palette Browser. It will then be added to ‘My Components’ repository. The second method of adding
a component is to drag a saved ‘.tox’ file from Windows Explorer, and drop it in the same region
mentioned above. The diagram below illustrates exactly where components should be dropped.

2 User Interface 21

2 User Interface 22

2.7 Search Dialog

The ‘Search Dialog’ is incredibly helpful as projects become more complicated, and riddled with
Python scripts and nested Networks. The ‘Search Dialog’ can find a multitude of things in a
multitude of places, and searches can be as broad, or specific, as needed. It is accessible in the ‘Edit’
menu at the top of the screen, or by pressing ‘F3’ on the keyboard.

The ‘Basic’ search can not only find Operators, but can search through Python code. Frequently,
Python is used to change Operator parameter values. Sometimes, in the thick of Python scripts, it
is easy to lose track of specific lines of code. A quick search for the code below will return a list
of every single line of code that involves changing parameters of the Operators with ‘transform’ in
their name:

1 op('transform').par

Sifting through the results is much easier than manually looking through Networks full of code.

The ‘Advanced’ search can search by any combination of name, Operator type, comments, flags,
and more. When returning to past projects, often it takes some time to relocate and reacclimatize to
the inner workings of complex logic systems. This is when searching for operators by vague name
and type can save a ton of time. For example, in an extremely nested system, somewhere in the
depths of it might be a Movie In TOP that has the word ‘movie’ in its name. These little pieces of
information about the Operator type, and partial name, can be used to create a fairly precise search.

When a search has yielded results, each result can be clicked on to open the Network in a new
floating pane. Here, the results can be can quickly previewed, and simple changes can be made
within this pane, without affecting the current work area.

2 User Interface 23

2.8 Realtime Flag

The Realtime flag changes TouchDesigner’s behaviour significantly. When it is active (it is active by
default), TouchDesigner will always prioritize real-world time. In a simple example, if a movie file
is 30 seconds long, no matter what happens, TouchDesigner will try to play it over the course of 30
seconds. If this means that frames need to be dropped, TouchDesigner will try to honour time. This
is the mode used for most real-time installation and performance work.

When the Realtime flag is off, TouchDesigner will prioritize frame rendering over real-world time.
In the example mentioned above, if Realtime is off, TouchDesigner would take as long as it needed
to process and render each frame, falling out of real-world time to display every frame. This mode
is useful when exporting complex animations or 3D renderings. Imagine this mode to be similar to
a real-time version of rendering out of Adobe After Effects.

2 User Interface 24

2.9 Useful Shortcuts

Below is a bullet point list of some useful shortcuts:

When hovering over the Network:

• ‘P’ - Opens and closes the selected Operator’s Parameter window
• ‘O’ - Opens and closes a visual overview of the Network in the bottom-left corner of the pane
• ‘C’ - Opens and closes the Colour Palette. This can add a coloured outline to the selected
Operators for easier identification

With an Operator(s) selected:

• ‘A’ - Allows interaction with the Operator’s viewer
• ‘B’ - Bypass and un-bypass the selected Operator
• ‘H’ - Performs the ‘Home All’ action on the Network, which is the equivalent to fitting all
Operators of a Network onto the screen

• ‘Shift + H’ - Performs the ‘Home Selected’ action which fits all the selected Operators onto the
screen

• ‘R’ - Toggles the Operator’s Render Flag (if it has one)
• ‘D’ - Toggles the Operator’s Display Flag (if it has one)
• ‘Control + C’ - Copy selected Operators
• ‘Control + V’ - Paste copied Operators
• ‘Control + Shift + V’ - Paste copied Operators at the mouse

3 TOPs
3.1 Introduction

Texture Operators, or TOPs, are a fundamental aspect of almost every project. They are the 2D tex-
ture Operators that handle everything from movie playback, 3D geometry rendering, compositing,
hardware video inputs and outputs, and are used to process everything that will be output to a
monitor, projector, or LED display.

3 TOPs 26

3.2 Movie In TOP

The Movie In TOP is one of the most used TOPs. It’s function is to load assets into TouchDesigner. It
is capable of loading many different types of assets, ranging from still images to a variety of movie
codecs. Below is a small list of common file formats used with the Movie In TOP:

• .mov
• .mp4
• .avi
• .tiff
• .jpeg
• .png

There are many more supported file formats, which are listed on the Derivative TouchDesigner 088
wiki under the ‘File Types’ page.

There are a few of great features built into the Movie In TOP that can significantly reduce the
headaches involved with quickly ingesting and outputting assets with different frame-rates. The
main feature is that the Movie In TOP’s goal is to playback assets while staying true to its time
duration. For example, if the project is set to 60FPS and an asset is made at 30FPS and is 10 seconds
long, it will play over the course of 10 seconds, regardless of FPS differences between the project
and the asset. The opposite is true as well. If a 10 second asset created at 60 FPS is played in a 30FPS
timeline, it will play over the course of 10 seconds. In both of these cases frames are either doubled
or discarded to stay true to each asset’s real-world time length. This makes interpolation of frames
a good idea in some situations.

3 TOPs 27

3.3 Preloading Movies

When creating real-time applications, continuous dropped frames can greatly detract from presen-
tation and impact. Diagnosing performance issues is something that will be discussed in a later
chapter, but many preventative measures can be taken. Preloading and unloading Movie In TOPs
is one of these preventative measures. The simple procedure of preloading and unloading movies is
often overlooked by new users because the easiest methods involve scripting.

Open example ‘Preloading.toe’. This example has a set of three buttons. The ‘Preload’ button uses the
following Python function to preload the number of frames set in the ‘Pre-Read frames’ parameter
in the ‘Tune’ parameters of the Operator ‘moviein1’:

op('moviein1').preload()

The ‘Play’ button starts playback of the Movie In TOP. The ‘Unload’ button stops ‘moviein1’
playback, and then unloads the movie, freeing up whatever system resources were being used. This
is done with the following Python script:

op('play').click(0)

op('moviein1').unload()

It is best practice to preload movies before playing them, otherwise there is a high risk of dropping
frames upon playback.

3 TOPs 28

3.4 Null TOPs and Select TOPs

In contrast to expensive TOPs, like the Blur TOP, some TOPs are ‘free’, and should be used
generously! Two specific examples are Null TOPs and Select TOPs. These two Operators, although
they don’t alter any pixel, are incredibly helpful in creating more efficient workflows.

The difference between an illegible network, with wires overlapping and sprawled everywhere, and
an easily followable Network are some properly placed Null TOPs and Select TOPs. Open examples
‘Null_1.toe’ and ‘Null_2.toe’. The first file is a mish-mash of TOPs which are composited together.
In this file, there is little regard for the layout of the Network, and the wires are overlapped by
other Operators and other wires, making it difficult to trace any particular series of Operators. In
‘Null_2.toe’ a column of Null TOPs are laid out to gather all the signals before they are composited.
This column of Null TOPs can serve as a checkpoint, and even at quick glance, makes it much easier
to follow series of operations.

The same case can be made for Select TOPs. When working with nested Networks, using the Out
TOP and pulling connections between containers can lead to the same situation as above, where
Networks become illegible rather quickly. The Select TOPs can quickly and neatly reference other
TOPs. Open example ‘Select_1.toe’. This examples demonstrates how using In TOPs and Out TOPs
can lead to extra clutter. This example is only replicating the movie 12 times! What would happen
if there needed to be 100 of them? This is where the Select TOP comes in handy.

Open example ‘Select_2.toe’. This example exponentially increases the amount of replicated com-
ponents while being simultaneously more legible. Even more interesting is the dynamic selection
system created using the Select TOPs. This is much more efficient than the manual method from
before, and allows a Python script in the Select TOP’s ‘Select’ parameter to automatically reference
the corresponding replicated TOPs from the Network above, based on the digits in their names. To
take this concept one step further, a Select DAT is used to drive a Replicator COMP that creates
a new Select TOP, and automatically wires it to the Composite TOP every time a new item is
added with the first Replicator COMP. Don’t worry if this example seems daunting, Replicators
and Scripting will be covered in later examples. For now, the important thing to note is that by
using Select TOPs and very simple scripting, this component is relatively future-proof and won’t
require much maintenance. When it comes time to replicate more items, it’s as easy as adding a row
to a table.

3 TOPs 29

3.5 Codecs

Movie playback is a taxing process. It is wise to spend time experimenting with different codecs to
see which one suits a project in terms of visual quality and performance.

Before diving into specific codecs, it is important to know the difference between a codec and a
container. Codec has taken over as the general term for the file format of audio-video files, which is
confusing for beginners, because many containers can hold multiple codecs.

Codec stands for compressor-decompressor. The codec has two main tasks. The first is to compress
video data for storage and transportation, and the second is to decompress the video data for
playback. Because of these different tasks, each codec is made for a different purpose. Some
prioritize compression for light weight, portable files, while others prioritize quality, for long-term
preservation of content. Different projects will have different requirements. Sometimes, the goal is
to play back a single piece of content at the highest quality possible, whereas other times, quality
must be sacrificed to be able to playback multiple video files simultaneously. Finding the right codec
for each project may require a few tests and some forethought, but it is time well spent.

A container does exactly what its name implies. It holds the compressed video, audio, and all
the metadata a movie player needs to properly decompress and playback the content. There are
quite a few different containers, but they have much less of an impact on the overall programming
workflow, compared to codecs.

Things can get complicated when different combinations of containers and codecs are used. Imagine
a file named ‘test_movie.mov’. In one example, this file could be an Animation codec compressed
video file inside of a ‘.mov’ QuickTime container. What’s interesting, and what also confuses many
beginners, is that in another example, this file could be an H.264 compressed video file inside of a
QuickTime container. To add to confusion, the same H.264 file could also be inside of a ‘.mp4’, or
MPEG-4 Part 14, container.

Confusion aside, some popular codec choices are currently the HAP family, H.264, Animation codec,
and Cineform. Each codec has its own set of advantages and disadvantages. Below is a very quick
point form list of some pros and cons to each:

HAP family

Pros

• Can playback extremely high resolutions and high frame rates
• Very little CPU cost
• HAP Q is visually lossless
• Very little GPU cost

Cons

• Large file sizes

3 TOPs 30

• Difficult to batch encode files on Windows
• Must use SSDs or a RAID0 of SSDs for file playback
• Main bottleneck is hard drive read speeds

H.264

Pros

• Creates extremely light-weight/low file size videos
• Best bang for buck when comparing quality to file size
• Low disk usage

Cons

• Requires a large number of CPU cores to playback extremely high resolutions or high frame
rate.

• Can experience colour quantization if proper care is not taken in encoding
• Bit rate is highly dependent on content
• 4096 pixel size resolution in both length and width
• Difficult to create alpha channels

Animation Codec

Pros

• 100% quality is a lossless file
• Prioritizes quality
• Has native support for Alpha channel

Cons

• Large file sizes
• Demanding on both hard drives and CPU
• Bit rate fluctuates with amount of detail in video content

Cineform

Pros

• Constant bit rate
• High image quality
• Native Alpha channel support

Cons

• file sizes
• Must purchase encoding software from Cineform

4 CHOPs
4.1 Introduction

The Channel Operators, or CHOP, family of Operators handle all channel operations including
motion data, audio inputs, key-frame animations, hardware inputs (from Microsoft Kinect, Leap
Motion, Oculus Rift, pen tablets, keyboards, mice, etc), DMX, MIDI, and OSC. These are the
Operators that handle inputs, processing, and outputs, of the data used to communicate with many
types of audio-visual gear such as:

• Mixers
• MIDI controllers
• Synths
• DMX lighting fixtures
• Microsoft Kinect cameras
• Computers running TouchDesigner
• Loudspeakers
• Other audio-video applications like Max/MSP, Ableton Live, Resolume Arena

4 CHOPs 32

4.2 Communication Methods

MIDI works with an extensive amount of existing software and hardware. Digital Audio Work-
stations, or DAWs, like Ableton Live, Avid Pro Tools, Propellerhead Reason, and more, all support
MIDI input and output. It is a relatively fast, stable, and time-tested protocol. Audio performance
controllers often come equipped with MIDI over USB. These controllers include inputs hardware
with controls such as: buttons, faders, piano keys, touch strips, jog wheels, drum pads, and
potentiometers.

Programming environments such as Cycling 74 Max/MSP, PureData, Native Instruments Reaktor,
and more, have support for OSC messaging. OSC messaging has the benefit of modern networking
technology, higher resolutions than MIDI, channel naming, and many structural improvements.
OSCmessaging can be sent over UDP or TCP connections, making it incredibly easy to network, and
transmit long distances in real-time. Currently, OSC is more commonly used as a communication
method between softwares and computer systems.

DMX is a protocol used by lighting fixtures and controllers. Many DMX fixtures have various
channels for dimmers, various settings, built-in chases, RGB channels, motor automation, and more.
Many lighting controllers and desks use DMX protocol to communicate with fixtures and video-
computer systems. With the many types of controllers and desks available, their manuals will be
invaluable when creating projects with them in mind. In general, all of a fixture’s channels need
to be accounted for, even if they aren’t being actively used. There are many ways to optimize the
workflow of sending and receiving DMX data, mostly concerning themanagement and organization
of channels. These will be looked at in later examples.

Sync In CHOP and Sync Out CHOP are used to frame sync internal and external instances
of TouchDesigner. They use the OSC protocol for their underlying communication. These two
Operators work by communicating the state of each frame on every synced machine. Once all sync
machines confirm that they have rendered the current frame, they simultaneously move to the next
frame. This sequence of events is repeated for every frame and keeps the synced machines always
on the same frame.

4 CHOPs 33

4.3 Audio Inputs and Outputs

Audio can be processed from a variety of sources, and can be processed in a variety of ways.
TouchDesigner is capable of processing audio from audio files, movie files, external audio interfaces,
internet audio streams, and can even synthesize audio from nothing.

Most projects involving sound design and audio tracks will include dedicated audio files. TouchDe-
signer is capable of reading and playing many standard audio formats such as MP3, AIFF, and WAV,
through the use of the Audio File In CHOP and the Audio Play CHOP. These files can be looped,
cued, re-pitched, and trimmed, allowing for flexible uses of samples and audio files.

The Audio Movie CHOP can be used to playback audio from a movie file. Instead of reading audio
by referencing a file, this CHOP references a Movie In TOP. This is useful because it keeps the audio
in sync with the video playing back in the Movie In TOP, and comes with a parameter that can be
used to offset the audio to better match the video.

There are many different external audio interfaces that can be used with TouchDesigner. It is best to
refer to the Derivative TouchDesigner Wiki and Forum for a more comprehensive list of compatible
devices.

These devices provide analog and digital audio inputs and outputs. These can be inputs from
musicians and instrumentalists, audio mixing consoles, professional video cameras, other computer
systems, and much more. These devices can output audio to many of the above mentioned
destinations, as well as to loud speaker systems. The CHOPs used to communicate with external
interfaces are the Audio Device In CHOP and the Audio Device Out CHOP. Each respectively
handles the inputs and outputs, to and from, a project. There is an Audio SDI CHOP which is used
in conjunction with the nVidia Quadro SDI card, to receive audio from external SDI sources.

There are two different audio drivers that can be accessed from within TouchDesigner. DirectSound
has been available since previous versions of TouchDesigner, and has been developed as a part of
DirectX. It is a mature driver, having been in development for many years, and provides relatively
low latencies even under heavy use.

ASIO is a new addition to TouchDesigner 088. It has been developed by Steinberg to improve on
one of DirectX’s main drawbacks, which is that DirectX feeds all audio through the Windows
operating system. Bypassing the operating system, the ASIO driver is able to communicate directly
with external audio hardware, thus creating lower latencies than what was previously possible with
DirectSound.

Once inputs and outputs are setup in TouchDesigner, they can be routed much like any other data.

4 CHOPs 34

4.4 Sample Rates

Many applications never expose the granular functions and operations that are happening behind
the scenes. Because of this, many people aren’t used to processing audio in a mathematical
fashion. Audio is, at its core, numerical data being processed incredibly fast. Knowing this lays
the groundwork for how to work with audio in TouchDesigner.

Open up example ‘Sample_rates_1.toe’. This example creates a very basic feature common in many
audio applications: muting. This is achieved by using a Math CHOP to multiply the audio stream by
the output value of a Button COMP, which is either 0 or 1. Like any other mathematical equation, a
value, in this case each sample of audio, multiplied by 0 will always be 0. Similarly, a value, or audio
sample, multiplied by 1 will be returned unchanged. These two states produce on and off states for
this audio example.

Let’s take this example a step further by allowing the button to fade the audio in and out. Open
example ‘Sample_rates_2.toe’.

This example takes the previous example and adds two Operators. The first is the Filter CHOPwhich
smoothens the input value. This creates a smooth ramp between the two states of the button. The
second is a Resample CHOP.

The sample rate of different Operators is something that is overlooked by many beginners, but is
essential to having artifact-free audio. The Oscillator CHOP is being sampled 44,100 times a second,
and the Filter CHOP is being sampled 60 times a second. This discrepancy means that there will not
be a 1:1 ratio between the samples of audio and the samples of the ramp when they are multiplied.
More accurately, there will be a 735:1 ratio between samples of audio and samples of the ramp. This
means when the two values are multiplied, the audio will step up or down in volume every 735
samples. Examine the diagram below, where the dotted blue line is a 1:1 ratio, and the dotted red
line represents a 735:1 ratio.

Looking at the diagram above, there is a very distinct stepping that happens when the two channels
that have different sample rates are multiplied. Many CHOPs use the project FPS as their default
sample rate, causing the stepping to become exaggerated when the project is set to run at 30 FPS.
Using the same example as above, the ratio of samples of audio and samples of the ramp would jump
from 735:1 to 1470:1. This means in a 30 FPS project, there would only be an incremental volume
change every 1470 samples!

The above examples highlight the need to always be aware of the sample rates of CHOPs in a project,

4 CHOPs 35

and to use the Resample CHOP when necessary. Many times, this situation will occur in regards to
audio, but there are instances where control data might need to be input or output at a different
sample rate.

4 CHOPs 36

4.5 Time Slicing

Time slicing is something that is unique to TouchDesigner, and can be a bit tricky to understand at
first.

A Time slice is the period between the last rendered frame and the current rendered frame. Think
of Time slices as dynamic amounts of time. If a project is running at a consistent 60 FPS, then the
time slices will be 1 frame in length. If a project is having trouble keeping up with real-time, and
drops 10 frames, the corresponding time slice would be 10 frames in length.

Time slicing exists to smoothen out CHOP data in situations where frames are dropped. To think
about it simply, Time slicing is when CHOPs start taking the size of Time slices into account when
cooking. Think of this as a kind of adaptive cooking, meaning that as the time slices grow in length,
the CHOPs will compensate for the amount of frames lost, and cook the amount of frames necessary
to produce smoother outputs. This is in contrast to CHOPs that aren’t time sliced, that will cook their
value at the last cooked frame, then jump to the value at the next cooked frame, no matter howmany
frames are dropped inbetween. Only CHOPs can take advantage of Time slicing.

Using the example above, when the timeline is running consistently at 30 FPS, every time slice
is 1 frame in length. If there are two ramps going from 0 to 1 over the course of one second (30
frames), both outputs would be smooth ramps. If, for some bizarre reason, only every tenth frame
was cooked, there would be very different results. In the non-time sliced CHOP, the value would
jump every time a frame is cooked, while the data between those cooked frames is lost. The Time
sliced CHOP is aware that it is only being cooked every tenth frame, and will cook the frames
inbetween to interpolate between the value of the last cooked frame, and the current cooked frame.
This keeps the data smooth no matter what is going on.

The diagram below illustrates the above example, where the dotted-blue line is a non-Time sliced
CHOP, the dotted-red line is a Time sliced CHOP, and the vertical dotted-green lines represent a
cooked frame:

4 CHOPs 37

Time Slicing

4 CHOPs 38

4.6 Common Channel Operators

This section is an introduction to some of the channel operators that are used in many situations.
There is an example file that is included in the .zip folder.

Generator CHOPs

Constant

The Constant CHOP holds up to 40 unique constant values. The channel name is defined in text
field on the left, and the value is defined with the number field slider on the right.

When a Constant CHOP is created, only 1 channel is active. If a channel is not active, its number
field is greyed out. To activate a channel just give it a name, and the number field will light up as
well as show up in the operator viewer.

To create multiple channels with the same value, you can name the channels using pattern matching.
If you enter chan[1-4] in the name field, 4 channels will be created: chan1, chan2, chan3, and chan4.
These channels will all have the same value.

Noise

This CHOP generates a set of pseudo-random points according to the settings in the operators
Parameters. There are 6 different algorithms to choose from, each with different characteristics and
may suit some situations better than the others. The basis for each algorithm is the seed value. You
can have 2 Noise CHOPs with the same values, and the noise would look the same, but if you change
the seed, it will generate a set of points based on the new seed number, creating a different result.
(ex.1 of noise.toe)

To create movement, you can change values on the Transform page. If you enter absTime.frame
to the first Translate field, you can see that the noise begins to scroll along the x-axis. (ex. 2 of
noise.toe)

To create multiple channels of noise, go to the Channel page of the Parameters, and in the Channel
Names field, enter the names of the channels separated by a space. (ex.3 of noise.toe)

The number of samples you would like to generate is determined by the settings on the Channel

page, with the Start, End, and Sample Rate. The amount of time multiplied by the sample rate. But
if you only need 1 sample at a time, you can go to the Common page, and turn the Time Slice toggle
to On. This creates 1 random value per channel for each frame, which requires less CPU usage. (ex.4
of noise.toe)

Pattern

The Pattern CHOP generates a function that is a set amount, or array, of samples. The size of the
array is set by Length on the Pattern parameter page, and the type of function is chosen by Type.

4 CHOPs 39

Cycles is the amount of times the function loops within the amount of samples.

There are settings to control your pattern, depending on what Type you have chosen.

From Range and To Range are very useful for something like a sine wave that creates a -1 to 1

value, but you need a 0 to 1 value. (There’s more on this later, in the Math CHOP section). (ex.3 in
pattern.toe)

This is a great tool for creating lookup tables. (ex.4 in pattern.toe)

LFO

The LFO CHOP generates an oscillating value according to the parameter settings. It goes back
and forth between 2 values that are determined by Amplitude and Offset, over a given time, or
Frequency.

Frequency generally determines how many cycles per second, except when a value is connected to
the first input for Octave Control. If the Octave Control value is set to 1, the speed is doubled, and
if the value is set to 2, the speed is doubled 2 (4x), etc. (ex.2 of noise.toe)

The shape of the oscillation is controlled by Type.

You can also oscillate using a different oscillation pattern by using the 3rd input. (ex.3 of lfo.toe)

Timer

This CHOP is very useful for anything that involves fixed time periods. You can trigger the timer
and recieve different types of data throughout its duration, as well as set it do act different ways
when it ends.

The timer can run once and stop at the end, run once and reset itself, repeat itself a certain amount
of times, or indefinitely.

Use the Timer parameter to set the length of the timer, and trigger it to start or reset. You can use
Delay to set an amount of time to wait after the Start button was triggered, to actually start the
timer.

Cue Point sets a point during the timer that you can jump to by triggering the Cue pulse. If you’d
like to be able to jump to a point that is half way through the duration of the timer, set Cue Point

to 0.5.

On the Outputs parameter page, you can select what information you would like to recieve. Some
common outputs are:

• Timer Fraction displays the percentage of the set time period that has passed, in a 0 to 1 value.
0.5 would mean the timer is half done and 1 meaning the timer is finished.

• Done is a value of 0 while the timer is initialized or running, and turns to 1 when the timer has
finished. It will turn back to 0 once the Init or Start button is triggered again.

4 CHOPs 40

Filter CHOPs

Math

This is probably the most commonly used CHOP. It takes data from its inputs and manipulates it in
different ways :

The most intuitive use would be to take a value and perform some simple math, like add 10, or
multiply the given value by 10. This is done on the Mult-Add parameter page.

Order of Operations

Commonly, we need to take a value, or set of values, and adjust them according to another value or
set of values. For example, if our end desire is to have a value moving up and down over time, but
we also want to add a random jitter, we could use a Pattern CHOP to create a SIN wave, a Noise
CHOP to create a random set of numbers, and using the OP parameter page of a Math CHOP, we
could set the Combine CHOPs drop-down menu to Add. The result could look something like this :

Combine Chops

Another very useful function of the Math CHOP is the Range parameter page. This takes a range of
values, and re-maps them to a new range. For example, if you have an LFO CHOP that ramps from

4 CHOPs 41

0 to 1, but you need that same movement to fit between the specific values of 7.9 and 51.4, it is much
faster to use the From Range and To Range parameters than to adjust it using order of operations.

Range

Select

This CHOP can be used to split up data that is contained in a single CHOP, or can be used to grab
data from a remote section of a project. You can also rename channels that you are selecting at the
same time.

If you have a CHOP that contains several channels of information, and need to apply a process to
2 of the channels, but not all, a Select CHOP will allow you to name the channels that you want to
focus on. Use the Channel Names field on the Select page of the parameters to list the channels you
require, separated by a space.

If you want to re-name these channels to something else, you can use the Rename From field to write
the original channel names, and the Rename To field to enter the new names.

This CHOP also allows you to point to other CHOPs from different areas of a project. Lets say you
have have data in a Constant CHOP that is nested inside 2 other COMPs. TheConstant CHOPs path
is /project1/base1/base1/constant1. But your project requires you to access this data in your
/project1 COMP. You could either make some Out CHOPs and manually wire the information,
or use a Select CHOP to wireless point at the path of the constant CHOP, which usually quicker
and keeps the network more organized. In the CHOP field of the Select parameter page, enter
project1/base1/base1/constant1, and you will now see the data.

As before, if there are several channels in the constant, and you only want to select 1, you can use
the Channel Names field to select the one you need, and rename it as well.

Merge

The Merge CHOP is the opposite of the Select CHOP. It takes channels from multiple CHOPs and
merges them into a single CHOP.

This is a straightforward idea, but if the results are different than what you expected, you will need
to middle-mouse-click on the input CHOPs to see if the Start/End samples match.

4 CHOPs 42

Range

Range

In the CHOPs pictured above, both the Start samples and the End samples differ. This is dealt with
by setting the Extend Conditions on the Channel parameter page of the Generator CHOPs that are
being input, as well as the Align options on the Merge parameter page of the Merge CHOP.

There is an explanation of the different Extend methods located on Extend CHOP wiki page, located
here³

³http://www.derivative.ca/wiki088/index.php?title=Extend_CHOP

http://www.derivative.ca/wiki088/index.php?title=Extend_CHOP
http://www.derivative.ca/wiki088/index.php?title=Extend_CHOP

4 CHOPs 43

You can also open up the example project and experiment with the extend conditions and the
different Align options.

Trail

The Trail CHOP creates a visual display of how the value of it’s inputs have changed over a given
time. This can be very useful when you need to see subtle differences of a channels movement, or
how a channel’s value changes compared to another.

Trail

Filter / Lag

Filter and Lag CHOPs create a smooth transition between values over a given time. The 2 CHOPs
have similar purposes, but different options.

Filter CHOP applies a smoothing effect or time, and you can choose the shape of the smoothing,
with different options for different shapes.

4 CHOPs 44

Filter Types

(see /filter_lag/ example 1 of the example project file)

Lag CHOP, depending on the method of smoothing, allows you to set 2 seperate effect-lengths for
an increasing input value, and decreasing input value. (see /filter_lag/ example 2 of the example
project file)

Trigger

This CHOP takes an event and creates an ADSR envelope (Attack, Decay, Sustain, and Release) with
some additional control.

The envelope can be triggered by the Trigger Pulse on the Trigger Parameter page, or by
connecting a CHOP to its input, such as the Out of a Button. These are the different parts of the
envelope:

Filter Types

4 CHOPs 45

The different sections of the envelope can have easings as well. Here is an example of with the
Attack Shape set to Ease out, Decay Shape set to Ease in Ease out and the Release Shape set to
Ease in:

Filter Types

5 DATs
5.1 Introduction

Data Operators, or DATs, perform operations on data. They can edit, parse, create, send, and receive
data in various forms. These forms of data can range from text strings, tables, Python scripts, XML,
JSON, MIDI, Serial, OSC, and much more.

Logical systems rely heavily on the use of DATs and Python scripting. Being able to parse tables
full of information and metadata, monitor other Operators and their states, perform complex tasks
based on incomingmessages from other systems, andmore, make it possible to create rather complex
systems in TouchDesigner. There will be a few simple logical systems in the examples portion of the
book, as they are one of the things that makes TouchDesigner unique.

An interesting way of thinking about TouchDesigner 088 is as a modular Python programming
environment. Imagine taking intricate, and long, Python programs and functions, and breaking them
into light-weight, and modular pieces. Think of the Text DAT as these pieces. This setup is easy to
learn from, easy to maintain, easy to expand upon, and even more importantly, easy to share and
work on collaboratively.

5 DATs 47

5.2 Communication Methods

There are quite a few DATs that are capable of providing inputs and outputs over the many standard
communication protocols. TouchDesigner is able to communicate natively over MIDI, OSC, TCP,
UDP, UDT, and Websocket, giving it the ability to speak to many different types of programs, web
applications and services, show control hardware, other computer systems, and etc.

MIDI, OSC, and DMX protocols were explained in the CHOP chapter. DATs can communicate over
the same protocols, and quite a few more.

TCP is the internet standard communication protocol. It is a connection oriented protocol, meaning
there is a clear client-server relationship between the communicating parties, and a connection must
be established (usually behind the scenes) before any data is transmitted. This relationship allows
TCP connections to be reliable, in that the communicating parties can provide acknowledgment
of all data sent and received, meaning no data ever gets lost. TCP is an ordered delivery stream,
meaning data sent in a specific order, will be received in that same order.

UDP, on the contrary, is a connection-less protocol, in that no explicit connection is established prior
to data transmission. This creates a level of unreliability in areas such as delivery acknowledgments,
dropped packets, and order of messages. If none of these are crucial to a project, there are some
performance gains in systems where dropped packets are less of an issue than delayed packets.

UDT is one of the newer communication protocols. It is essentially the better parts of UDP and TCP
combined. It is built on the UDP protocol, but is connection-based, and reliable. This means that is
has the same acknowledgments and data ordering that a TCP connection would have, but over the
faster UDP protocol.

A benefit of connection-less protocols is that they support a feature called ‘Multicast messaging’.
This means that regardless of how many computers are connected, each message is only sent over
the network once.When sending the samemessage tomany computers, this removes the overhead of
sending the same message to each individual computer. This is the opposite of ‘Unicast messaging’,
in which each connected computer receives an individual message, even if the message being sent
to every machine is the same.

Websocket is the go-to communication method when working with web browsers and real-time web
application. It has been designed from the ground up to be used as an interface betweenweb browsers
and servers, and the protocol has simplified some key functionality in regards to bi-directional web
communication.

6 SOPs
6.1 Introduction

The Surface Operators, or SOPs, family of Operators are used for any and all 3D operations. This
includes working with simple 3D geometry, particle systems, architectural models, 3D characters,
and more. SOPs are the oft ignored operators by many beginners because of their steep learning
curve, but rest assured that a firm knowledge over the SOP family of operators will open up many
incredibly interesting opportunities, project-wise, as well as offer many extremely efficient ways of
solving problems.

Many projects involving projection mapping, real-time 3Dmotion capture, architectural LED facade
installations, and layered video players, would either be impossible or extremely difficult without
the SOP family of operators.

TouchDesigner 088 currently supports the following 3D file types:

• .fbx
• .obj
• .3ds
• .dxf
• .dae

Keeping Operators from cooking needlessly is essential to smooth performance, which will be
discussed further in the ‘Optimization’ section of the book. This is even more important when it
comes to SOPs. Always try to apply transform animation data to a Geometry COMP instead directly
of to a SOP. This is because SOP transformations happen on the CPU, and the transformation must
be performed for every vertex that is present in the geometry. Component level transformations
are applied to the 3D geometry, or object, as a whole, and are performed on the GPU as a single
operation. A single operation performed on the GPU is much preferred when compared to what
could amount hundreds or thousands of operations performed on the CPU.

The number of total points, primitives, vertices, and meshes will vary depending on what kind of
model is being processed, but the basic principle is that the more polygons/vertices in a model, the
more processing power and GPU RAM are needed to process operations. There are tools inside of
TouchDesigner to reduce polygon counts in complex models, but optimizing geometry in dedicated
modelling suites can provide more flexibility.

6 SOPs 49

6.2 Rendering

One thing many beginners struggle with is the process of quickly and effectively transitioning from
a 3Dworkflow to a 2Dworkflow. The Internet is full of 3Dworkflow tutorials that can explain many
of the finer points of 3D rendering, but for this chapter, the goal is to get from point A, a simple 3D
object, to Point B, a Render TOP.

There are three parts to a 3D scene:

1. 3D geometry (and materials)
2. Camera
3. Lighting

Open example ‘Rendering_1.toe’. Taking a quick look at it, there are three basic things needed to
render the scene, Camera, Light, and 3D geometry, which are all referenced by a Render TOP. Let’s
break down each aspect of the render setup, and then look at how it all fits together.

The appropriate place to begin is the 3D geometry. This is the essence of it all. The 3D model
can be anything from simple polygons, animated 3D characters, architectural models, etc. Whether
importing or procedurally building models, all of the operations are done with SOPs, and these SOPs
end up in a Geometry Component. A key idea to grasp is that in TouchDesigner, SOPs themselves
are never directly rendered. Instead, Geometry Components, or Geometry COMPs, are rendered,
that hold SOPs that are flagged for rendering. This is a crucial idea to understand. Two scenarios
demonstrate this.

Open example ‘Rendering_2.toe’. In this project, there is a single geometry that is sent into 4 different
Geometry COMPs, each of which is rendered with different transform values. For the sake of
example, this project uses a Box SOP, but in this could apply to more complex models. Performing
operations on a complex character, and having a few iterations of it, could max out a system’s
headroom. Going back to the idea that SOPs aren’t directly rendered, it becomes logical to load the
model once, from which a few iterations can be housed and rendered from Geometry COMPs.

Open example ‘Rendering_3.toe’. This is very different than the previous example, in that there is
a single Geometry COMP with 3 different models that are being rendered. Keeping in mind that
Geometry COMPs are rendered, it becomes logical to group these models into a single Geometry
COMP, that is being rendered. The difference may seem arbitrary, but as projects become more
complex, saving resources becomes paramount.

Till now, the various geometry haven’t had any materials. Materials are what make 3D scenes
interesting. The difference between a cement building-block and a 3D box is a material. Textures
can be applied at two levels: the SOP level, and the Component level. The first is through the use of
the Material SOP, and the second is by referencing the material in the ‘Render’ tab of a Geometry
COMP. In the example ‘Rendering_4.toe’, both materials look the same, but each use a different
method of texturing.

6 SOPs 50

Now that materials are added to the mix, let’s quickly discuss UVmaps. Open example ‘Rendering_-
5.toe’. This is the same example as above, but the same texture looks completely different. This is
because the co-ordinates of the UV map have been changed.

The second aspect of a 3D scene is light. Just as in real life, 3D scenes require lighting. Open example
‘Rendering_6.toe’. This example has a simple box being rendered, but nothing is visible in the Render
TOP. This is because the light’s dimness has been purposefully set the to 0, to demonstrate how
important lighting is, and how it is often overlooked.

The next few example projects are the same scene with different lights. In each consecutive project,
the Light COMP has been transformed to light the Box SOP from a different angle. These are example
projects ‘Rendering_7.toe’, ‘Rendering_8.toe’, and ‘Rendering_9.toe’.

The last aspect to rendering a 3D scene is the camera. The camera is the eye and perspective. What
the camera sees is what gets rendered. Open example ‘Rendering_10.toe’. All the movement in the
scene stems from the animated camera movements. Often times, a camera is placed in a scene and
never thought about again. This can lead to boring 3D scenes that feel very static and lifeless. Don’t
be afraid to think like a cinematographer, and experiment with camera positions, focal lengths, and
animated camera movement.

There are two main types of cameras: perspective cameras and orthographic cameras.

6 SOPs 51

Perspective cameras need very little explanation, as they work similarly to the human eye.
Perspective cameras have a perspective point, and a view frustum that are used to determine what
the camera sees and how that is rendered. With a perspective camera, imagine all light in the 3D
scene funnelling towards the perspective point. Perspective correction, or ‘foreshortening’, is applied
on all objects in the scene, meaning that objects farther away from the camera appear smaller. This
camera ends up being used most often as it functions like human eyes. An example of this type of
camera can be found in example file ‘Camera_1.toe’.

This example highlights perspective correction. There are two cubes, both the same size. The cube
placed farther in the scene appears smaller, just as it would in real life. This is the simplest example
of how a perspective camera functions.

Orthographic cameras, on the other hand, are very different. Those familiar with computer-aided
design (CAD) software, may have encountered orthographic cameras before. The key principle
behind an orthographic camera is that there is no single point of perspective. All of the light in
the imaginary 3D scene would not filter into a single point, as in a perspective camera. Objects are
not distorted by their Z position in space, meaning that no matter how far away from the camera
an object is, it will appear no bigger or smaller than the other objects in the scene.

Open example ‘Camera_2.toe’. This example is exactly the same as ‘Camera_1.toe’, but there is a
big difference in what is being rendered. In this example, the two cubes appear to be side by side,
regardless of positioning in Z space. This can be a hard concept to understand the first time it is
presented. Two ways of thinking about it are as follows:

First The concept of a 3D world that gets squashed onto a single plane before it gets rendered.
Imagine the original Super Mario video game actually being a 3D scene that was rendered using an
orthographic camera. No matter where bad guys and platforms are on the screen, whether at the
edge or in the middle, they are always the same size and shape, and have no perspective correction
applied.
 Second Think about the blueprint of a building in a CAD program. It is a representation
of a 3D object on a 2D plane. No matter where the blueprint is perceived from on screen, 1 unit of
measurement on the edge of the screen is exactly the same length as 1 unit of measurement in the
middle of the screen. Any change in the camera positioning doesn’t distort what is being rendered.

6 SOPs 52

None of this is to say that Z-depth is irrelevant when using an orthographic camera. Z depth becomes
imperative when layering different pieces of geometry in a scene.

The camera is equally important for projection mapping projects. Projection mapping will be
explored in later examples, but for now, the key is to understand another of the Camera’s roles.
In projection mapping, the primary goal is to turn real-world objects into 3D display surfaces. To
achieve this, a 3Dmodel of the object is imported into TouchDesigner and textured using a variety of
sources. This textured object then needs to be rendered. Camera COMPs come into play to simulate
real-world projectors. Gathering as much information about the characteristics of a projector and
its lens, the Camera COMP can accurately replicate the point of view of the projector inside of
TouchDesigner. These points of view are then rendered, output, calibrated, and lined up to the real-
world object. This is the basis of projection mapping.

7 COMPs
7.1 Introduction

There are 3 types of Component Operators, or COMPs, and each have different uses:

Object components create, light, and view 3D scenes

Panel components create UI components such as buttons, sliders, and window panes

Other components include components that create keyframe animations, replicate other Operators,
and create output windows

Component Operators are generally used in conjunction with other Operators. The ‘Object’
components are used in various combinations to create and render SOPs and 3D scenes. The ‘Panel’
components are used to create UIs and various containers to create output rasters. The ‘Other’
components are used for various tasks, such as keyframe animations, dynamic Operator replication,
opening windows on various displays, etc.

An interesting fact to put things in perspective is that a large amount of TouchDesigner is made from
components inside of TouchDesigner. Understanding this really helps in grasping the granularity
of TouchDesigner, and how to approach working on various projects. For example, all Panel
components are made of other Operators. Create a Button COMP, and inside its Network, its
background is made of a Text TOP, and its on/off values are being generated by a Panel CHOP.
Similarly, all of TouchDesigner’s UI is made and stored in the ‘ui’ container in the root of all projects.
Even themenus and dialogs, like theMIDIMapper Dialog and the Variables Dialog, are created using
other TouchDesigner components.

7 COMPs 54

7.2 Window COMP

The Window COMP is used in almost every project to display the contents of an Operator in a new
window. Whether using the Window COMP to create a full-screen output, or to create more of a
traditional windowed application, there are a number of options that will need modifying. Because
of the unique nature of every project, there are no ‘best settings’ to consistently rely on. Spend some
time and go over the parameters on the Wiki, and experiment to find works best in each and every
new situation.

Open example ‘Window.toe’. This example demonstrates a very helpful practice, as well as some
simple Window COMP functionality. It is best practice to use a Container COMP as the source of
the Window COMP’s output. This is because the texture in a TOP can be dragged around the screen,
even in Perform Mode. If this happens, the texture will remain shifted until the project is reloaded,
or until the texture is moved back to its original position. The same texture shifting doesn’t occur to
Container COMPs. The texture inside of a Container COMP cannot be dragged around by default,
meaning the texture will always be consistent.

The other functionality in this example is rather simple. The first is a button, whose Null CHOP is
being referenced in the ‘Open in Separate Window’ parameter of the Window COMP. This allows
easy access to the opening of the window. The next is a button that dynamically checks how many
monitors are connected, by getting a row count from the recently implementedMonitors DAT. Using
that value to cycle a Count CHOP, open the windowwith the first button, then use the second button
to cycle through which monitor this window is assigned to.

7 COMPs 55

7.3 User Interface Components

Component Operators are incredibly important as they create user interfaces in TouchDesigner.
Specifically, the Panel Components are what provide this functionality. Many user interfaces will
be created in later examples, so only a few basic examples will be examined in this section.

Three of the most useful Panel COMPs are:

• the Slider COMP
• the Button COMP
• Container COMP

The first two function with the same capabilities as sliders and buttons in other applications, but
can be modified to suit different requirements. Buttons can be programmed as toggles, radios, or
momentary buttons. Sliders can function as single axis sliders, or as full XY pads.

Container COMPs, on the other hand, don’t have a function other than acting as a container for
other UI elements.

Open example ‘UI.toe’. In this example, there is a simple UI. From the bottom of the Network
upwards, there are the 2 Button COMPs and the 5 Slider COMPs. These are the components that are
actually creating the UI’s functionality. The parent of these elements, is used to group and arrange
the buttons and sliders separately. Notice that if the viewers for ‘container1’ or ‘container2’ are
activated, the UI elements are usable, but neither ‘container1’ or ‘container2’ have any outputs or
Operators in their Networks. Similarly, the results are the same when ‘container1’ and ‘container2’
are combined inside of ‘container3’. This is because Container COMPs have the ability to display
their children in their viewers. Container COMPs facilitate the creation of complex interfaces using
a combination of smaller pieces.

8 MATs
8.1 Introduction

Material Operators, or MATs, are used for materials and shaders for 3D geometry.

A deep knowledge of computer graphics and rendering helps a great deal when working with
materials and shaders. Without this knowledge, most users will be restricted to the basic settings of
the Phong MAT and Point Sprite MAT.

Texturing and UV mapping geometry are involved processes, and the best results are often achieved
inside dedicated modelling packages. The textured models can then be imported, and worked with,
in TouchDesigner.

Many tools exist for modifying textures, such as the Texture SOP, but complex processes might be
easier to achieve in a software package created for that specific purpose.

8 MATs 57

8.2 Phong, GLSL, and Point Sprite Materials

The three most used MATs are:

• the Phong MAT
• the GLSL MAT
• the Point Sprite MAT

The general uses of these three MATs will quickly be covered in this section. These are three very
different Operators, and cover many shading and material needs.

The Phong MAT is the most common material Operator. It is responsible for applying texture to 3D
geometry. There are a variety of maps that can be applied, such as Color, Bump, Specular, Diffuse,
and more. The Phong MAT can mix and match Ambient, Diffuse, Specular, Emit, and Constant
lighting. Open example ‘Phong.toe’. In this project there are two very simple examples of the Phong
MAT. The first uses the texture’s alpha to create a transparent box. The second sets the Emit Light of
1,1,1 to fully illuminate the object regardless of the lighting condition. There will be many examples
of the Phong MAT when it is put to use in the examples section.

The GLSL MAT is used to create custom materials using the OpenGL Shading Language (GLSL
for short). GLSL is a fantastic programming language that can create extremely complex textures
that run extremely quickly. It achieves this by giving the programmer quite a bit of control over
the graphics pipeline, without exposing them to assembly languages. There can be a slight learning
curve when first starting, but there are tons of examples of GLSL shaders on the Internet, as well as
quite a number of great examples in the ‘Shared Component’ area of the TouchDesigner Forum.

The Point Sprite MAT is used to assign sprites to the points of a particle system. The name is self
explanatory, in that a 2D image (a sprite) is placed at every single point in 3D space. The sprites are
always facing the camera, and are scaled according to their Z depth. The example ‘Point_Sprite.toe’
demonstrates this. To create a similar TouchDesigner network without point sprites, not only would
there be a pretty disorganized Network, of who knows how many Transform TOPs and Composite
TOPs, but they would all be using muchmore resources. By using a particle system and point sprites,
the Network is easy to read, and doesn’t require a lot of system resources.

8 MATs 58

8.3 UV Maps

UV mapping is an essential to working with complex 3D geometry. As with certain other aspects of
3D modelling, it is easier to create and work with UV maps in a dedicated modelling program.

UV mapping is what allows designers and artists to create interesting motion and still graphic
textures for 3D geometry. It bridges the 2D world that motion and still graphics are created in with
the 3D world of the geometry.

UVmapping is a three-step process. The first step is the unwrapping of the 3D object into a 2D plane.
This unwrapped texture is called a UV map. It is referred to as a map, because much like any other
type of map, it takes a 3D object and accurately, and proportionally, creates a 2D reference. This is
the same as street maps or world maps, that take the 3D universe and represent them on a 2D plane.

Texturing is the the second step. The 2D UVmap is used by artists and designers in their compositing
softwares to create textures, whether still or moving. The benefit of the UV map is that the textures
can be applied to the geometry with a high degree of precision.

The third step is the application of the texture onto the 3D geometry. This varies depending on the
software used.

The combination of these three steps are referred to as UV mapping.

The third step is a relatively common operation in TouchDesigner. As long as the 3D geometry
is exported correctly from its modelling software, it will include co-ordinates indicating to other
applications where the UV maps should be applied. In these situations the texture is loaded in a
Movie In TOP and applied using a Phong MAT to the geometry. If any changes need to be made to
how the UV map is applied, the Texture SOP can be used.

Below is an example of a simple 3D box, and it’s UV map:

8 MATs 59

8 MATs 60

9 Python
9.1 Introduction

Python scripting is one of the most powerful features of TouchDesigner 088. It is capable of doing
incredibly complex operations, like iterating through large data sets, natively communicating with
a myriad web APIs, controlling and changing the parameters of other Operators in extremely rapid
succession, and much more.

It is important to note that, as of writing, TouchDesigner 088 uses Python 3.3.1. Python 3 differs
from Python 2.7 in a number of ways, but most issues can be resolved with a quick Google search.
Most questions have probably already been asked, and the solution could be as simple as a set of
parentheses.

For example, in Python 2.7, the Print function could be used without parentheses, where in Python 3,
this will raise an error. Below is an example of how many Python 2.7 courses use the Print function:

1 print 'text'

This is in contrast to how the Print function is used in Python 3, where the parentheses are required:

1 print ('text')

An incredible feature of Python, aside from it’s readability, is that there are many external libraries,
many of which can natively connect to most of the webs most active spaces, like Facebook, Twitter,
Instagram, Foursquare, etc. These kind of native integrations unlock a world of real-time data driven
projects, as well as incredible real-time data sets for visualizations and client presentations.

There will be quite a bit of Python scripting in later examples, and although it is not mandatory
to do so, it is highly recommended that some time be spent learning Python through introductory
tutorials. There are many fantastic resources for learning Python, some of them gamified, and most
of them often quite easy to pick up and put down. Often times, 10-15 minutes a day of tutorials, over
the course of a few weeks, can provide a strong fundamental knowledge of Python, and more than
enough knowledge to do quite a bit of scripting in TouchDesigner.

9 Python 62

9.2 Textport

The Textport has a few important roles in regards to scripting inside of TouchDesigner. There are two
ways to open the Textport. The first is by using key command ‘Alt + T’. The second is by selecting
‘Textport’ from ‘Dialogs’ in the menu bar at the top of the TouchDesigner window.

The first is that it can be used similarly to the IDLE shell that comes with Python installations. For
example, open the Textport, type the following, and hit ‘Enter’ on the keyboard:

1 print(2+2+2+2)

Running this in Python would print the result of the equation, which is 8. After hitting ‘Enter’ in
the Textport, the result of the equation is displayed. This is because the Textport works as a Python
interpreter. Type Python code into the Textport, it will be processed, and the results will be returned.

It can similarly do the same for tscript, the scripting language that was used in TouchDesigner 077.
Notice that when the Textport is opened, the first thing printed is:

1 python >>

This is because in TouchDesigner 088, the Textport interpreter is set to interpret Python by default.
To work with tscript in the Textport, the mode of the Textport needs to be changed from Python
to tscript. This is done by clicking on the Python logo in the top left corner of the Textport. Once
clicked, it will change to the letter ‘T’ and the next line of the Textport will be:

1 tscript ->

This means the Textport is now in tscript mode. To confirm this, type the following tscript code into
the Textport:

1 echo Hello!

Similar to the Python Print function, the above tscript code will print ‘Hello!’’ to the Textport.

Another great use of the Textport is as a Python debugger. Open example ‘Textport_1.toe’.

This is a very simple example that highlights how beneficial the Textport becomes when using
Python scripts. Open the Textport, and then click on the ‘Good Python’ button in the middle of the
Network. This will run a script that prints to the Textport:

1 this will not error

Now click on the ‘Bad Python’ button. The Textport will display something very different.

9 Python 63

1 File "/project1/chopexec1", line 11

2 Print(this will error)

3 ^

4 SyntaxError: Invalid syntax

This is a Python error, occurring because some of the code being interpreted is invalid. Learning to
read these errors can greatly speed up debugging large Python scripts. Let’s examine the different
portions of this error.

The first line indicates exactly where the error is in the Network, and which line of the script the
Python interpreter believes is invalid:

1 File "/project1/chopexec1", line 11

In this example, the Operator with the error is ‘chopexec1’ inside of the component ‘project1’. The
Python stops interpreting the script at line 11.

Below that, the Textport prints the line with the error:

1 Print(this will error)

More often that not, spelling mistakes and slip-ups can easily be caught by these two lines. In this
case, it is clear that the string being printed is not enclosed in quotation marks. Knowing where the
error is, and more specifically what the line the error is occurring on, means this would result in the
problem being quickly solved. For the sake of this example look at the last line of the error:

1 SyntaxError: Invalid syntax

The last line of the error is the type of error Python is encountering. More detailed information on
the different types of errors can be found by looking through the official Python 3.3 documentation,
under the ‘Errors and Exceptions’ section. The ‘SyntaxErrror’ is a very common error, and is caused
by the Python interpreter encountering code that isn’t valid Python syntax. As mentioned, the above
line of code is the missing the quotation marks around the string being printed.

Printing to the Textport is an excellent way to take some of the mystery out of scripting. When
scripting in larger and larger projects, there are often scripts in every Network, and quite often,
many of them are performing backend tasks, such as preloading and unloading movies, that have
results that are difficult to view. More often than not, scripts are running in parallel in different
Networks, and it becomes incredibly difficult to tell if the timing of scripts are correct, or if actions
are happening in the wrong order.

By having simple Print functions spread throughout scripts, it is not only easy to see when scripts are
running, but myriad pieces of information can be printed as well. Some of these pieces of information
can be as simple as the path to the script that is being run, or as detailed as what values and variables
are being worked with and changed.

9 Python 64

Open example ‘Textport_2.toe’. In this example, there are two sequences of scripts that run one after
another, with a certain amount of pause between them. Click the ‘Visual Sequence’ button. This
sequence has buttons that are clicked into the On position as each script is run. This is solely to
make it easier to see the progress of this sequence. How would this progress be monitored from
another Network?

Open the Textport and click the ‘Textport Sequence’ button. Contrary to the first sequence, this
sequence prints a message to the Textport as each script is run. There may not be buttons visually
changing states in the Network, but a number of new abilities are gained. The first is the ability to
monitor these scripts from anywhere in the project. The second is that it is possible to compare the
timing of these sequences to any other scripts that are running elsewhere in the project. The third,
and possibly the most valuable, is the ability to pause the project and have a written history of the
most recent sequence of events.

This history becomes absolutely invaluable when debugging complex logic systems. In a project
with 30 Networks and 300 independent scripts, when a series of actions fail without raising any
Python errors, without an ordered log of events, it would be impossible to trace bugs. As a script
becomes longer and more complex, it is easy to create more of these pseudo-checkpoints throughout
the script, such as ‘running X section of Y script’.

9 Python 65

9.3 Common Practices

There are some common practices that should be upheld when working with Python. Something
that is interesting about the Python language is that it is built around the idea of readability and
simplicity. Python has an easter egg built inside of it, which can be accessed by entering the following
code into a Python interpreter or the Textport:

1 import this

Python returns a poem named ‘The Zen of Python’ by Tim Peters. Below is that text:

1 The Zen of Python, by Tim Peters

2

3 Beautiful is better than ugly.

4 Explicit is better than implicit.

5 Simple is better than complex.

6 Complex is better than complicated.

7 Flat is better than nested.

8 Sparse is better than dense.

9 Readability counts.

10 Special cases aren't special enough to break the rules.

11 Although practicality beats purity.

12 Errors should never pass silently.

13 Unless explicitly silenced.

14 In the face of ambiguity, refuse the temptation to guess.

15 There should be one-- and preferably only one --obvious way to do it.

16 Although that way may not be obvious at first unless you're Dutch.

17 Now is better than never.

18 Although never is often better than *right* now.

19 If the implementation is hard to explain, it's a bad idea.

20 If the implementation is easy to explain, it may be a good idea.

21 Namespaces are one honking great idea -- let's do more of those!

This poem is the motto for many Python developers. Many of its lines try to convey Python’s ideals
and common developer sense.

Think about the line:

1 'Explicit is better than implicit'

This can be applied to something that is often done in a hurry: naming. There are many different
areas in Python and TouchDesigner where objects reference each other by name. A developer

9 Python 66

ends up naming variables, functions, Operators, Networks, and more. Without carefully naming
Operators, it would be impossible to know each Operator’s function. Similarly, without care in
naming variables, as demonstrated earlier in the chapter, reading scripts can become quite a tedious
task. There are two conventions that are regularly used when naming Operators and variables in
TouchDesigner.

The first involves using underscores in the place of real-world spaces. Here are some examples:

• final_comp
• stop_button
• time_now

The underscores make names easier to read and quickly understand. There are individuals who
aren’t partial to using underscores, and because of such the second convention involves using capital
letters to differentiate between words. Here are some examples:

• finalComp
• stopButton
• timeNow

Both are able to convey the original idea of explicit naming, and should be used to facilitate
collaboration.

9 Python 67

9.4 Commenting Code

Commenting is a practice that should not be overlooked by new users of Python. As easy as it is to
write a few lines of script, it takes only a few more seconds to quickly document what those lines
do. This comes in handy in a multitude of situations such as:

• Sharing code and projects with other programmers
• Maintaining code in older projects
• Changing the functionality inside of a re-usable component

It may seem frivolous when scripts are brief, but it is a habit that should be solidified from day 1.
Look at the example code below:

1 a = 10

2 b = op('value')[0]

3

4 op('op12').par.rx = b

5

6 c = str(op('numbers')[0])

7 d = 'testing'

8 e = 'something'

9

10 op('lines').par.text = d + e + c

This script is hard to read for a number of reasons. Themain reason is that its actions weren’t obvious
when quickly skimmed. One quick way to increase the readability of this script is to comment it.
Let’s take the above script and add some basic comments to it:

1 #Set initial variable

2 #get the value from slider input

3 a = 10

4 b = op('value')[0]

5

6 #assign the slider value to video input rotation

7 op('op12').par.rx = b

8

9 #take numeric input from computer keypad

10 c = str(op('numbers')[0])

11 d = 'You'

12 e = 'pressed'

13

14 #create a sentence from variables above

15 #add it to a Text TOP to display

16 op('lines').par.text = d + e + c

9 Python 68

Without taking the time to create meaningful variable and Operator names, the above script is still
much easier to read through. Even out of context, the function of the script is apparent.

This kind of simple addition can make collaborating with other developers much easier and more
enjoyable.

9 Python 69

9.5 Compartmentalizing

The more complicated projects become, scripts will slowly become longer and longer. At a certain
point, it will take more time to search through code, than it will take to actually change and add to
it. Because of this, it is important to compartmentalize all of a projects scripts.

This means a few different things, and incorporates a few different techniques, but it yields quite a
number of benefits. All of these benefits will directly improve one’s workflow, but more importantly,
they will take a lot of the pain out of collaborative settings. Some of the benefits include:

• Easier long-term maintenance of scripts
• Less time spent explaining scripts to colleagues
• Easier reusability of programmed functionality
• Faster short-term edibility and code management

Open example ‘Scripting_1.toe’. In this example, there are 10 Movie In TOPs and there are a series
of actions that need to be performed on each of them. First, each one should be unloaded. Secondly,
each one will be assigned a new file path. Finally, each movie needs to be preloaded, and prepared
for playback. Because this is a Python example, all of these actions will be performed with Python
script. Take a look at the Text DAT named ‘movies’.

A quick note about this script: For the sake of this example, this script doesn’t iterate over all of the
Operators using loops. This is to simulate what a longer and more complex script would feel like,
even though only a few simple actions are being performed.

Right-click on the Text DAT named ‘movies’, select ‘Run’, and all the actions mentioned above will
occur in sequence. This script has been lightly commented, but looking through it quickly can be
a bit disorienting. To edit a single value somewhere in the code, it would have to be found in the
long list of actions. Colleagues would have to spend more time trying to figure out what this script
does. To re-use a piece of this script in the future, pieces of it would have to be manually found and
extracted. How can these processes become more efficient?

Open example ‘Scripting_2.toe’. This example takes the code from the previous example, but
separates each of our ‘actions’ into its own, isolated, Text DAT. Immediately, even without diving
into each of the scripts, it is easy to tell what each one will do. There is one for unloading movies,
one for changing paths, and one for preloading movies. At the end of each, there is a line of code
that runs each progressive script in the sequence. This is line of code uses the Run class:

op('preload').run()

It would be easy to quickly edit a single value, as actions and parameters are much easier to track
down now. Passing this component to a colleague would be no trouble at all, as they could quickly
see what each script does at first glance. If someone needed a script to start to preload of a set of
Movie In TOPs, it could be quickly taken from this project.

9 Python 70

This compartmentalized workflow helps cut hard to manage scripts, some more than 500 lines in
length, into smaller scripts that are easy to sort through quickly and share. In the case of the above
example, there is third way to handle working with these multiple Operators.

Open example ‘Scripting_3.toe’. This example takes advantage of Python functions. A Python
function is a small cluster of code that can be called to perform as series of action. Inside of the
Text DAT named ‘actions’, a function has been defined that contains the set of actions that need
to be performed on each Movie In TOP. From the Text DAT named ‘set_movie_tops’, instead of
retyping the same set of actions over and over, the new function is called by passing it the name of
each Movie In TOP.

Although the series of actions have been slightly arbitrary, the idea is simple: compartmentalize
Python scripts for ease of maintenance, easier co-operative workflows, re-usability, and ease of
management.

9 Python 71

9.6 External Modules

One of the underused benefits of Python integration in TouchDesginer is the ability to import third-
party Python libraries and use them natively. This includes the ability to use libraries such as the
popular Requests or Beautiful Soup libraries. Importing a library is a simple process.

1. Install a 64-bit build of Python. At the time of writing, 3.5 is the latest.
2. Use ‘pip’ to install your desired packages
3. Open TouchDesigner and go to the ‘Edit’ menu, and then click on ‘Preferences’
4. Find the setting under ‘General’ called ‘Python 64-bit Module Path’ and add the path to your

64-bit Python ‘site-packages’ folder. This folder can be found in your Python installing folder,
inside of the ‘Lib’ folder

5. Inside of TouchDesigner, create a Text DAT, and test the package by using standard ‘import’
command

It is a good idea to confirm that ‘pip’ installed the package for the correct version of Python. A
common issue users face is that ‘pip’ is called for a different version of Python than is desired.

9 Python 72

9.7 Where to Learn Python

Below is a very basic list of some free, online, Python tutorials. (Note: some of the tutorials are for
Python 2.7, but are incredibly well made, and thus included).

CodeAcademy http://www.codecademy.com/tracks/python⁴KhanAcademy https://www.khanacademy.org/science/computer-
science⁵Coursera https://www.coursera.org/course/interactivepython⁶GoogleDevelopers https://developers.google.com/edu/python/?csw=1⁷
Learn Python The Hard Way http://learnpythonthehardway.org/⁸

⁴http://www.codecademy.com/tracks/python
⁵https://www.khanacademy.org/science/computer-science
⁶https://www.coursera.org/course/interactivepython
⁷https://developers.google.com/edu/python/?csw=1
⁸http://learnpythonthehardway.org/

http://www.codecademy.com/tracks/python
https://www.khanacademy.org/science/computer-science
https://www.khanacademy.org/science/computer-science
https://www.coursera.org/course/interactivepython
https://developers.google.com/edu/python/?csw=1
http://learnpythonthehardway.org/
http://www.codecademy.com/tracks/python
https://www.khanacademy.org/science/computer-science
https://www.coursera.org/course/interactivepython
https://developers.google.com/edu/python/?csw=1
http://learnpythonthehardway.org/

10 Outputting Content for
Deployment and Performance
10.1 Perform Mode

Performmode should be used whenever possible when deploying projects. The basic premise behind
Perform mode is that when a project is ready to be delivered, it will be in a state that won’t require
on-demand programming, and thus won’t require the Network editor. It is surprising how much
system resources can go towards just rendering the Network editor, especially if there are many
Operators with visible viewers, displaying CHOP channels, TOP previews, DAT tables, etc.

Therefore, Performmode exists so that that computer can focus on rendering the content, and doesn’t
have to render the extra Network editor. Everything that is involved with creating the final product
is still rendered and active in Perform window, including elements such as external data inputs and
outputs. The only thing that stops being rendered is the Network editor.

As mentioned in the Component chapter, it is recommended that Container COMPs are used as the
source for Window COMPs. The same recommendation applies to Perform mode.

Open example ‘Perform_mode.toe’. In this example, the Container COMP, ‘container1’, is used as
the source for Perform mode. Press the ‘F1’ key to enter Perform mode, and the contents of the
container will be displayed in a new window. Press the ‘ESC’ key to exit Perform mode and return
to the Network editor. There is a UI button that can be used to enter Perform mode via the mouse.

10.1.1

10 Outputting Content for Deployment and Performance 74

10.2 Performing with the Network Editor

Every situation is different, and it is possible that programming might have to be done during a live
performance. If that is the case, there are a few things that can help manage the impact the Network
Editor has on the system. The first is to turn off the viewers on any Operators that don’t need to be
monitored. See the diagrams below:

10.2.1

10 Outputting Content for Deployment and Performance 75

10.2.2

The next thing that helps is to only use 1 pane in the Network Editor. The more panes that are visible,
the more things there are needing to be rendered.

Finally, moving in and out of large Networks should be avoided.Moving in and out of large Networks
can cause frame drops, as TouchDesigner will have to render all of the Operators in that Network
before they can be viewed.

10 Outputting Content for Deployment and Performance 76

10.3 Creating an Output Raster

As a general rule, to get the best performance possible, one should always strive to only use
1 Window COMP at a time. This doesn’t apply while programming, but when it comes to
deployment and performance, havingmore than onewindow openwill greatly decrease the system’s
performance. So what should be done if there are multiple outputs with different positions and
rotations?

The answer is to create a raster for the output and create a single, all-encompassing, window that
will span all of the real-world outputs.

This is more simply expressed with an example. In this example scenario, there are four SXGA+
projectors, each with a resolution of 1400x1050. In the real-world setup, there are two projects
beaming horizontally on side walls, and two projectors beaming vertically, and edge blended, on
the center wall. The diagram below illustrates the desired setup.

10.3.1

This setup isn’t particularly complex, thus knowing how to deal with it most effectively is important.
Let’s take this setup, and lay it out in 2D.

10 Outputting Content for Deployment and Performance 77

10.3.2

A beginners’s first instinct might be to use four Window COMPs because there are four outputs,
two of which need to be rotated. The challenge is finding the most efficient layout for these four
canvases, to create a single raster. In this instance, because all four outputs are the same resolution,
an easy solution is to make a 2x2 grid.

10.3.3

In the above diagram, all of the outputs are placed into a single raster. This setup can efficiently use

10 Outputting Content for Deployment and Performance 78

one Window COMP that is 2800x2100 pixels. At this point, the nVidia or AMD control panel should
be used to create a similar setup out of the monitors in Windows, which should then be connected
to the correct outputs on the graphics card.

The next step is to prepare this raster inside of TouchDesigner. Open example ‘Raster.toe’. There
are a few things to note from the start. For the example, some very basic dummy content has been
created, and will represent where real content would go. ‘Content1’ is for the left wall projector and
is 1400x1050 pixels. ‘Content2’ is for the middle set of projectors and is 2100x1400 pixels. ‘Content3’
is for the right wall projector and is 1400x1050 pixels. All of the canvas building happens inside of
the ‘canvas’ Container COMP.

In the ‘canvas’ container, the signal path can be followed from left to right, and from top to bottom,
like a waterfall. The first step is to create a blank raster that content can be composited on. There
is a Constant TOP set to 2800x2100 pixels at the top left of the Network for this purpose. Using an
Over TOP, the first piece of content is placed, for the left wall projector, in its appropriate position,
according to the diagram above. This is done using the ‘Translate’ parameter of the Over TOP.
Projector 1: done!

The middle wall has two projectors that are edge blended together. Because a few operations need to
happen on the raw content, there is a container name ‘crop’. This keeps the operations encapsulated,
neat, and easy to find. Inside of ‘crop’, three main operations are performed. The first is that the
big piece of content is cut it in half, so that each projector can display half of the image. Since the
projectors are positioned vertically in the installation, but are positioned horizontally in the raster,
the ‘Flop’ parameter of the Flip TOP is used to turn the canvas on its side. The settings for the Flip
TOP will always end up being different depending on hardware setup, so be prepared to try different
Flip and Flop settings to get the correct content orientation.

Side note:Most beginners have trouble rotating a full canvas. The first instinct is to use the Transform
TOP, but it is important to note that the Transform TOP will transform the pixels inside of a canvas.
This is where the ‘Flop’ parameter of the Flip TOP comes in. It will fully rotate the canvas.

Since this example isn’t dedicated to edge blending, the ‘edge_blend’ containers are just place holders
that create the visual effect of a blended edge.

With all the cropping, rotating, and blending done, the two projector outputs are ready to be
composited onto the raster. Using the same technique as before, an Over TOP with a modified
‘Translate’ parameter correctly positions the two pieces of content. Now Projector 2 and 3 done as
well!

The final projector is as simple as the first, and using the trusty Over TOP, the final piece of the
puzzle is positioned.

As mentioned in an earlier chapter, it is best practice to use Container COMPs instead of TOPs as the
source for Window COMPs. In this project, there is a container that is 2800x2100 pixels that holds
the completed raster. The ‘final’ container is set as the Window COMPs ‘Operator’, the ‘Borders’
setting is turned off in the Window COMP, and the window size is set to 2800x2100 pixels. With
that, the project is ready to be output to the above, 4 projector, setup.

10 Outputting Content for Deployment and Performance 79

10.4 Displays, Tearing, and Stuttering

There has not been much hardware discussion throughout this book, but it is important to keep a
few things in mind when working with multiple displays. The most important rule is to always try
to have all display hardware be exactly the same. Any difference in the signal flow, can cause what
is called ‘tearing’. The image below is an example of a frame that has tearing.

Examine the image below. Is it an example of what a frame with tearing will look like. Notice the
two horizontal cuts across the frame:

Image courtesy of Wikipedia

Tearing occurs when a display refreshes its image out of sync with when the graphics card renders
its image. The result is part of the image being from the previous frame, and part of it being from
the next frame. On slow moving content, this can sometimes be hard to notice, but once there is any
sort of motion in the content, tearing becomes incredibly distracting.

Tearing is a complex issue to solve, but there are a few preventative measures that can be taken to
avoid it. The first is to use a professional graphics card, such as something from the nVidia Quadro

10 Outputting Content for Deployment and Performance 80

series. Most companies will not guarantee tear-free playback on anything but their professional
cards.

The second is to always ensure that the displays are identical. Identical can’t be stressed enough.
If there is an installation with 3 outputs that have a refresh rate of 60hz, and one output with a
refresh rate of 59hz, there is a chance there will be tearing. If there is an installation with two 1080p
projectors, and two SXGA+ projectors, there is a chance there will be tearing. The best practice is
to use displays that are not only identical in specifications, but are also the exact same model of
displays. Network remote access applications like VNC and LogMeIn have also been the culprits of
tearing.

This brings up a very important issue with tearing: there are no hard and fast rules. Sometimes,
setups with a handful of different resolutions and refresh rates will work perfectly and won’t tear.
On the other hand, sometimes even setups with identical displays can tear. Enough emphasis cannot
be put on preventative measures to avoiding tearing. When tearing issues arise, the only things that
can be done are a step by step breakdown and analysis of the system to see what is causing the
tearing.

There is a list of common debugging methods on the Derivative Wiki page for ‘Tearing’.

Generally the steps to begin with are as follows, in no particular order:

• Verify the project isn’t dropping any frames. Dropped frames can sometimes trigger tearing
• Verify no other applications are interrupting or mirroring the graphics card drivers, such as
VNC and LogMeIn.

• Disconnect every display connected to computer, and one by one connect them until tearing
occurs. Then isolate that display on it’s own, and figure out if it’s being cause by a single
display, or by the layout

• Verify all displays are configured to the same resolution, colour bit depth, and refresh rate, in
the nVidia or AMD control panel

• Verify that none of the displays have any rotation applied in Windows. this can cause
unpredictable behaviour.

• Check the graphics card driver version and update it if necessary
• Check for drivers or firmware updates on external video splitters - such as the Datapath X4 or
Matrox TripleHead2Go

• Confirm only 1 Window COMP is being rendered
• Verify Windows Aero is disabled. In Windows 7, Aero can cause dropped frames and stutters,
but won’t tear. Once disabled, the system might tear, but stutter free playback is guaranteed.

• Configure a Premium Mosaic using the nVidia Control Panel to create a single logical display

There are many instances in which a system that performs perfectly, and doesn’t drop a single
frame, will occasionally stutter. This may occur because of how displays and graphics cards negotiate
different refresh rates.

If a project is running at 30 FPS, but a display’s refresh rate is 60hz, frame doubling has to be
negotiated somewhere. Between the graphics card and the display, most of the time this negotiation

10 Outputting Content for Deployment and Performance 81

is done transparently, but sometimes there can be issues. What can occur is that instead of
negotiating a proper frame doubling for every frame, one frame might be displayed once, while
the next frame is displayed for three frames. From the project’s point of view, no time is lost and
no frames were dropped, so it would not be reported in the Performance Monitor or Windows Task
Manager.

If it seems that this kind of issue may be occurring, use the ‘FPS is Half Monitor Refresh’ feature in
the Window COMP. This informs the graphics driver that it should show each frame for 2 refreshes.

10 Outputting Content for Deployment and Performance 82

10.5 Edge Blending

Video projectors are an incredibly flexible and are able to create infinitely large canvases. This is
done by creating arrays of projectors with overlapping edges that are blended together to create a
seamless canvas. This act of blending the overlapping sections is called ‘Edge blending’.

The idea of edge blending might be new to those who generally work with monitors and screen
arrays. A great example of the principles behind edge blending can be done relatively quickly. Set
up 2 projectors and have one project the color blue and have the other project the color green.
Separately, these projectors output their assigned colors, but if you aim the projectors so that the
colors overlap, the areas where these two projectors overlap you will actually have a turquoise color.
These principles of physics and additive color mixing are the basis for edge blending.

There is an excellent paper written by Paul Bourke that goes much more in-depth on the subject of
edge blending than we will be going here. For further reference and reading, please find that paper
at the link below:

Edge blending using commodity projectors by Paul Bourke http://paulbourke.net/texture_-
colour/edgeblend/⁹

The best way to learn the basics of edge blending is through an example setup. In this example, the
goal will be to blend two 1920 x 1080 projectors in a 1 x 2 array (1 unit tall and 2 units across). Below
is a diagram of a 1 x 2 array of projectors:

10.5.1

The act of blending both of these projectors will require an overlapping section. The amount
of overlap needed will vary based on many factors such as projector resolution and installation
parameters. Starting with a blend zone that is a power of 2 close to 10\% of your single projector
size can be a good place to start experimenting. For this example, 10\% of the length of a 1920 x 1080
screen is 192 pixels, and the nearest power of 2 is 256.

This overlapping section can cause problems if all of its implications aren’t considered. For the image
to overlap, that means the both projectors must have the same content on their blending edges. In
this example, that means that the right edge of Projector A and the left edge of Projector B must

⁹http://paulbourke.net/texture_colour/edgeblend/

http://paulbourke.net/texture_colour/edgeblend/
http://paulbourke.net/texture_colour/edgeblend/
http://paulbourke.net/texture_colour/edgeblend/

10 Outputting Content for Deployment and Performance 83

have the exact same content. Filling in some numbers, that means that the 256 pixels on the right
edge of Projector A must be the same as the 256 pixels on the left edge of Projector B, as per the
diagram below:

10.5.2

It’s important to take this fact into consideration in regards to the full production pipeline and
workflow. It seems natural at first to think that a 1 x 2 array of 1920 x 1080 projectors would need
content created at 3840 x 1080, but that assumption can lead undesirable consequences.

A projector has a set amount of physical pixels just like a monitor. Two 1920 x 1080 images placed
edge to edge will have a span of 3840 pixels, but if pixels need to be doubled in the overlapping blend
zone, those extra pixels used for blending don’t appear from thin air. The blend zone will need to
consume pixels that would have otherwise been used for content.

In this example, if the content creation team created a 3840 x 1080 asset, 256 pixels would need
to be discarded from somewhere to account for the 256 pixels that are going to be doubled in the
blend zone. Where these pixels are discarded from is a matter of preference and tool choice, but
the preferred method is to discard half of the blend zone from each non-blended edges opposite the
blend zone. This method keeps the absolute center of the canvas the area where blending will occur,
as per the diagram below:

10 Outputting Content for Deployment and Performance 84

Discarded Edge Layout

Always be aware of this loss of pixels when edge blending projectors to avoid placing critical
information or content around areas where pixels may be discarded. So why remove only half the
blend zone (128 pixels) on each side and not remove the whole blend zone from each side (256
pixels)? The answer is that to create an overlap of 256 pixels in the center, each side needs to be
shifted 128 pixels towards the other. When both sides are moved 128 pixels towards each other, the
resulting overlap is 256 pixels.

Before proceeding with edge blending in TouchDesigner, there are a few ways to approach creating
content for blended projectors.

The first is to create content at the full output resolution, in this example that would be 3840 x 1080,
with a buffer of content around the edges where pixels will be discarded. Even though parts of the
buffer will be discarded, it allows for a bit of flexibility in changing the size of the blend zone during
installation and setup without worrying about cutting too much content and not having enough
to fill the canvas. This is the ‘safe’ way to proceed for projects that don’t have an experienced
projectionist on staff to calculate the blend zones before installation.

For projects that do have a projectionist or other experienced individual on staff, there is the option
to have the content team create content to the size of your visible image, and not the full output
resolution. This is appealing because it means that there are less pixels to process in generative
pipelines or pixels to read from a hard drive. To calculate the total image size in this example, take
the full output resolution (3840 x 1080) and subtract the size of the blend zone (256 pixels). This
leaves 3584 x 1080 for content, or the image resolution. The risk exists with this method that if the
blend zones aren’t calculated correctly, then the content may not be large enough to fill the screen
without additional scaling.

Whichever route is chosen, the diagrams below illustrate firstly the final output of each projector
side by side as seen by Windows and TouchDesigner, and secondly the projected image as seen on
the projection surface after the blending.

10 Outputting Content for Deployment and Performance 85

Full Layout

Full Image Layout

Implementing this example is straightforward in TouchDesigner thanks to built-in edge blending
tools. Before using the built-in edge blending component, let’s take a look at the base elements of
an edge blending workflow in a simple example.

Open example ‘Simple_blend.toe’. In this example, the Container COMP named ‘content’, creates
stand-in 3840 x 1080 content by stretching a TouchDesigner sample file. The output of this container
is then split into two parts using Crop TOPs, one for each projector. The important thing to note
here is the offset mentioned previously is in the Crop TOPs. Projector A’s Crop TOP creates a 1920
x 1080 (projector resolution) texture starting from the left edge that is offset 128 pixels to the right,
discarding 128 pixels (half the size of the blend zone) from the non-blended edge, in this case, the
left edge. Similarly, Projector B’s Crop TOP creates a 1920 x 1080 texture starting from the right edge
that is offset 128 pixels to the left, discarding 128 pixels from the non-blended edge, in this case, the
right edge. Both textures being offset by 128 pixels towards each other creates a 256 pixel overlap
for blending.

10 Outputting Content for Deployment and Performance 86

To create the blend zone, these textures are multiplied by alpha ramps that are the size of the blend
zone, which is 256 x 1080 pixels. There are a number of other elements needed to create a seamless
image, but this example is to demonstrate theworkflow. After the elements have their edges prepared
for blending, they can be appropriately composited onto a single texture that is the full output
resolution, or in this case, the individual textures are then assigned to the backgrounds of Container
COMPs, each at the projector resolution. These Container COMPs are then parented and aligned
using the parent container’s ‘Align Layout Horizontal Left To Right’ parameter, which effectively
creates the master output.

There are a few elements missing from this basic example such as gamma and luminance correction,
but this should give you an example of the process of cropping the source texture, offsetting the
pieces to create an overlap, creating the blend zone using a ramp, and then creating an output from
that. With a basic understanding of the workflow, let’s take a look at an example using the more
feature-rich built-in edge blending tool.

Open example ‘Full_blend.toe’. This project file has two examples in it corresponding to the two
methods of content creation that were discussed. To find the edge blending component for your
own projects, open the Palette Browser either using ‘Alt + L’ or by going to the ‘Dialogue’ menu
at the top of the screen and clicking on ‘Palette Browser’. Inside the Palette Browser, under the
‘Tools’ section, you will find the ‘EdgeBlend’ component that can be dragged into your project. This
component is based on the same paper by Paul Bourke referenced earlier.

In both examples, the ‘EdgeBlend’ component is set to have a blend of 256 pixels. The ‘EdgeBlend’
component creates an overlap of content in the center of the texture, at the expense of discarding
pixels on the non-blended edges. It multiplies the blended edges by a ramp and composites the
processed textures onto a canvas that is the full projector resolution.

The first example uses stand-in content at the full output resolution of 3840 x 1080 pixels. This is the
‘safe’ method mentioned earlier where losing extraneous content on the non-blended edges allows
a bit more flexibility in blend zone adjustments during installation.

The second example uses stand-in content at the image resolution of 3584 x 1080. At this resolution,
pixels don’t need to be discarded from this texture. One key thing to remember is that many edge
blending tools will assume that you are using the first example’s route, providing content at the full
output resolution and they will discard pixels on the outside edges and return a texture at the same
resolution as your input texture. That is why in this example, the image resolution asset (3584 x 1080)
is composited in the center of a full output resolution canvas (3840 x 1080) before being input into
the ‘EdgeBlend’ component. Thus the ‘EdgeBlend’ component will double content in the middle and
discard the blank space on either side of the image.

The difference of outputs can be seen clearly, whereas the top example loses the reference color bars
that were on the outside edges of the image, and the second example does not.

With these outputs prepared, it’s a matter of sending the correct texture to the correct projector.
How to rig projectors and work with complex rigs is outside of the scope of this chapter. In an ideal
situation, both projectors are parallel with the projection surface as such:

10 Outputting Content for Deployment and Performance 87

Projectors

If the amount of pixels in the blend zone are already known, input them into the ‘Region’ parameter
of the ‘EdgeBlend’ component. Then try turning off the ‘Enable Blend’ button to make sure your
image is correctly overlapping. At this point, the overlapped images should match and be lined up.
Always remember the main purpose of an edge blending tool is to remove the seams, not line up
the content.

If the amount of pixels in the blend zone aren’t know, turn off the ‘Enable Blend’ button and enter a
guess. Trying a lower value in the ‘Region’ parameter will offset each projector’s texture towards the
center, while a higher value will offset them towards the edges. Continue increasing or decreasing
the ‘Region’ value until your the content in the overlap is the same. Then turn on the ‘Enable Blend’
button.

At this point, use the ‘Blend’ slider to adjust power of the blend. A higher value will make the ramp
steeper, whereas a lower value will create a more gradual ramp.

You may need to perform gamma correction on the contents of the blend zone. This is because light
isn’t perceived linearly, so the luminance of a pixel being input at 0.5 might not be double that of
brightness of a pixel being input at 0.25 (pixel values being normalized from 0-1). Almost all video
data already passes through gamma correction but because of the variance of projector technologies
and the fact that there are two projectors overlapping, you may find subtle changes need to be made.
These sliders are used to compensate or lessen the intensity of the gamma correction.

The ‘Luminance’ slider controls the overall luminance of the blend zone. If the blend zone is brighter
or darker than the rest of image, bringing this slider below 0.5 will make the blend zone darker, while
raising this slider above 0.5 will brighten the blend zone.

11 Optimization
11.1 Introduction

Is is incredible to think about the challenges that are overcome when working in real-time. All the
hardware and software aside, there is an extraordinary amount of precision to real-time work.When
working in a project at 30 FPS, every single thing that is processed, displayed, and created, must be
done in a 33ms window. That’s not even a tenth of a second! This window is even smaller when
working at higher frame rates. A project running at 60 FPS only has 16ms to render every frame
from start to finish.

Realizing how tiny the window of opportunity is, it is important to cherish every single fraction
of a single millisecond. Wonder why Operators are taking a whole millisecond to cook. Become
nervous and try to salvage every half millisecond possible, knowing that every millisecond makes a
difference. These all require basic project analysis and optimization skills.

TouchDesigner uses the CPU and GPU heavily, and knowing how to figure out which is under more
demand is an important skill. When faced with larger and larger Networks, knowing where the
system is stalling, and how to optimize Operators to get around these pitfalls, can be the difference
between successfully delivering and not delivering a project.

11 Optimization 89

11.2 Finding the Bottleneck

The computer as a whole can be thought of as a pipeline. The CPU, GPU, RAM, and hard drives,
all work together to create the final product. They sometimes work independently, but often times
they are reliant on each other, because they individually perform very specific tasks. In a pipeline,
the system can only be as fast as the weakest link. Because of this dependant nature, one stage of
the pipeline can stall a whole project, even if the rest of the pipeline is completely clear. This stall,
or weak link in the chain, is referred to as a bottleneck.

An example of a pipeline with a bottleneck is a project that tries to render some basic 3D geometry
and texture their faces with video files. This hypothetical project consists of 4 Box SOPs. Every face
of the Box SOPs are textured with a 1920x1080 HAP Q movie file. The computer being used for this
has 32GB of RAM, dual 8-core processors, a top of the line nVidia Quadro graphics card, and a single
5400-RPM hard drive.

When launched, this project just won’t run on this system. Regardless of how much RAM, how
many processors, and how expensive a graphics card, the project can’t read that many HAP Q files
from a single 5400-RPM hard drive. The computer will continually stall because the hard drive can
not spin fast enough to read every single movie file simultaneously. HAP Q files are demanding on
the hard drive, and no matter how powerful the rest of the computer is, the project will not run. The
GPU can’t begin to read movies from a hard drive, just as the hard drive cannot begin to process
pixels. The hard drive, in this case, has become the bottleneck in this project’s pipeline.

Generally there are three areas where bottlenecking occurs: the GPU, the CPU, and the hard drives.

The GPU is a pipeline in and of itself, and pixel shading is the stage that is likely to become a
bottleneck. Whenever operating on pixels, using almost any TOP, the system demands more and
more of the GPU’s pixel shader. The higher the resolution, the higher the demand on the GPU.
There is a 1:1 ratio between a TOPs resolution and it’s GPU workload. If a TOP’s resolution is
reduced by a factor of two, its GPU workload is proportionally reduced. A quick way to check if
there is a pixel shading bottleneck is to lower the resolution of all generator TOPs, such as Render
TOPs and Constant TOPs. If there is an immediate increase in speed and performance, then it is
clear that there is a pixel shading bottleneck.

When the graphics card is overworked, seemingly random TOPs will start to have higher than
normal cook times. This becomes apparent when looking in the Performance Monitor at the cook
times of various TouchDesigner UI elements. If all of a sudden, the various UI elements are taking
more than a millisecond to cook, the Network needs to be optimized to relieve the GPU of some of
its workload.

The CPU is second area where bottlenecks are experienced. Most Operators require the CPU to
function, thus the CPU can quickly be overworked. CPU bottlenecks tend to be easier to track down,
because the Operators that take a long time to cook are visible in the Performance Monitor. It is
possible to measure how much CPU head room there is with the Hog CHOP. This CHOP does as it
name implies, and hogs CPU processing power. The ‘Delay’ parameter is the amount of seconds that

11 Optimization 90

the Hog CHOP will add to the cook time of each frame. If a Hog CHOP is created and the project
begins dropping frames, that means the CPU is the our bottleneck.

All movie files use the CPU to decode data from their compressed state. Certain codecs use the CPU
more than others, and reading many movie files simultaneously can use more CPU resources than
one would imagine.

An overloaded CPU reacts similarly to an overloaded GPU, in that inconsistent results will appear in
the Performance Monitor. Operators will have varying cook times. This is because their operations
are started, but before they finish, the CPU is called to perform another process. The amount of time
that the Operator spends waiting for the CPU to return to its process is what increases it’s cook time.
Unlike a GPU overload, a CPU overload will generally effect more than just TOPs.

Hard drives are the third areawhere bottlenecks occur. Specific operations can be demanding on hard
drives, and it is easy to overlook high quality solid state drives (SSD) when preparing systems for
deployment. Operations such as reading and writing movies can quickly exhaust a drive, depending
on the codec used. This bottleneck will often appear in the Performance Monitor as a line item under
a Movie In TOP that such as:

1 Waiting for frame for 90 - E:/test.mov from harddrive

Where the number is the frame of the movie, and the path is the path to the movie file.

11 Optimization 91

11.3 Using Performance Monitor

The Performance Monitor is a tool for analyzing the cook time of a frame. This is useful when trying
to optimize and debug a project’s performance.

There are three ways to access the Performance Monitor:

1. ‘F2’ on the keyboard
2. ‘Alt + Y’ on the keyboard
3. Clicking ‘Performance Monitor’ under ‘Dialogs’ in the menubar at the top of the screen

There are only a few buttons, and they perform simple tasks that are almost self-explanatory.

11 Optimization 92

Performance Monitor

1. Performs an analyses on the current frame
2. Clears the current results
3. Saves the current results to a text file
4. Change what is being monitored
5. A millisecond threshold value, which if crossed by a frame’s cook time, will trigger the

Performance Monitor to analyze
6. Filter the results for more precision, i.e. only CHOPS, TOPs, etc

It is important to note that cook times are based on the CPU. This doesn’t mean GPU bottlenecks
will go unnoticed in the Performance monitor, but be cognizant that these are CPU readings.

11 Optimization 93

Here is an example analyses from the Performance Montior.

Performance Monitor 2

The analyses above is taken from a simple project with a few Movie In TOPs and a few Over TOPs.
Every frame that is analyzed will have some similar Operators. These are the Operators responsible
for the functionality and user interface elements of TouchDesigner.

Look at the marked sections on the above diagram to see the cook times, and paths, for the Operators
responsible for TouchDesigner’s main functionality (User interfaces, dialog windows, etc), and more
importantly the Operators belonging to the example project. The cook time of each Operator is
represented by a white bar that is sized proportionally based on its contribution to the total cook
time of that frame. When projects grow and become more involved, the section labeled ‘Example
project’ will grow to include all of the project’s Operators. This allows the analysis of a project to

11 Optimization 94

find problem Operators that too many system resources.

In this example, the paths and cook times of the series of Over TOPs can be traced. They are all
located inside of the ‘project1’ container, and their cook times range from 0.06 milliseconds to 0.6
milliseconds.

A cautious side-note: Be careful of the effects of Vertical Sync and how cook time is perceived in the
Performance Monitor. The graphics card will try to lock project FPS and display refresh rate. At 30
FPS, even in an empty project, the cook time per frame might be perceived as 33 milliseconds. The
same effect can occur when working at 60 FPS, except that the Performance Monitor would show a
frame cook time of 16 milliseconds. This doesn’t mean that each frame actually needs a full 33 ms
or 16 ms to render a frame, but that Vertical Sync is trying to sync TouchDesigner’s FPS and the
refresh rate of the displays.

11 Optimization 95

11.4 Operator Cooking

Better performance can always be achieved by decreasing the amount of Operators that cook every
frame. Many beginners never take this into account when creating Networks. Admittedly, everyone
has worked on prototypes with tight deadlines, and has had to created Networks without much
foresight. However, not taking cooking into account can be quite hazardous if a project can’t afford
any dropped frames.

The main goal is to perform static operations as early as possible in the signal flow, to prevent those
specific from being rendered every frame.

Open example ‘Cooking_1.toe’. In this example, there is a simple graphic that rotates, and then
various Operators are used to give the image a more interesting look. A feature that can help with
optimizing Networks is the animation of the wires connecting Operators. Animated wires mean that
the Operators on both ends are being cooked every frame. Starting at the far left of the Network,
the wire between the Movie In TOP and the Transform TOP is not animated. This is because the
image is loaded, and remains static. Operators only cook when they need to perform an operation
or change. A still picture is static, and therefore does not change, and does not cook every frame.

On the contrary, the rest of the wires in the Network are animated, meaning that everything after
the Movie In TOP is cooking every frame. For this project, this isn’t a dire problem, because there
isn’t anything extremely complex happening. Getting in the mind set of making efficient Networks
from the start can save a lot of headaches come performance time. Let’s take a look at this project
in the Performance Monitor.

11 Optimization 96

Operator Cooking

Ignoring all the Operators needed for TouchDesigner’s functionality, there is a small block of
Operators dedicated to this example. The operations being performed on the image, in total, take
about 0.25 milliseconds. As mentioned, static operations only need to cook once, and something to
note is that many of the operations after the Transform TOP are static in nature. Let’s re-arrange
these and see the gains in performance.

Open example ‘Cooking_2.toe’. This project is the same as the previous, except the Operators have
been re-arranged. Before examining the signal flow closer, let’s take a look at the Performance
Monitor.

11 Optimization 97

Operator Cooking 2

At first glance it appears as if the project has shrank! A few of the Operators that were listed
previously have disappeared. This is because these Operators aren’t cooking every frame. In the
last example, the Transform TOP was performing a transformation every frame, forcing the TOPs
after it to recalculate their operations every frame. In this example, all of the static operations happen
at the start of the signal flow, leaving the Transform TOP free to perform its transformation, without
forcing any other Operators to recalculate their operations, or cook.

Taking a more in depth look at the Performance Monitor reading, the only Operator that was
cooked was the Transform TOP, which took 0.061 milliseconds to cook. Compare this to the previous
example, where the series of operations took 0.25 milliseconds to cook. That is an unbelievable gain
for such a simple change.

It is worth noting that side by side, the outputs of these two Operator chains may not be exactly
identical, but they are so indistinguishable from each other that many clients and artists will not
mind the difference, knowing that the massive performance gains will allow them to do so much
more.

11 Optimization 98

11.5 Resolution

When it comes to working with 2D textures, resolution is extremely important, because of the almost
1:1 ratio of pixels processed compared to processing power used.

An incredibly easy way to demonstrate this fact is through example. Open example ‘Resolution_-
1.toe’. This is a simple setup. The butterfly is composited on a bigger canvas, then using some LFOs,
the opacity and blur are modulated before it is composited onto the forest background. Middle
clicking on any of the TOPs will reveal that this example requires just over 100MB of GPU RAM.
That’s not a lot of memory on a system with 4+ GB of GPU RAM, but this can quickly add up. Try
to composite 40 of these butterflies in real-time, and 4GB can easily be spent.

Now contrast this to example ‘Resolution_2.toe’. It creates the exact same results, but for only 60MB
of GPU RAM. That is a significant difference. Take the above example of compositing 40 butterflies,
and using this secondmethod, only about 2.4 GB of GPU RAM are needed. All of the extra headroom
from a simple change in resolution. The source butterfly asset is only 512x512 pixels, and in the first
example, it is immediately composited on a 1920x1080 pixel canvas that is modulated. This creates
a scenario where TouchDesigner is constantly re-drawing all 1920x1080 pixels every frame that the
butterfly is modulated. ‘Empty’ pixels that have neither colour or alpha data are also re-drawn. In
the second example, the exact same operations are being performed, but only on the source asset,
which is a much lower resolution. This modulated asset is then composited on the 1920x1080 canvas.
This saves the GPU having to re-draw a large canvas of pixels, when only a small section requires
processing, thus saving quite a bit of GPU RAM and processing power.

11 Optimization 99

11.6 GPU Memory Fragmentation

Operators that use the GPU will often allocate the resources required for their tasks, and hold onto
them until the task has been completed or changed.

GPU Fragmentation is one of the main concerns when working working with projects that have
many different content sources. For example, a Constant TOP with a resolution of 1280x720 is
connected to 10 other Operators. Once connected and cooked, each Operator will set aside the proper
amount of GPU memory required to handle the processing of its specific amount of pixels. Once the
memory is allocated, the Operators can operate relatively efficiently within their allocated space.

If the resolution of the source Constant TOP is changed, this will trigger a chain reaction, where
all of the 10 other Operators will have to reallocate the correct amount of GPU resources for their
tasks. If the Operator’s resources are reallocated efficiently, many of the same memory blocks will
be reused. If on the off-chance they can’t reuse memory blocks, they’ll have to relocate to the end of
the memory. If this happens enough times in quick succession, the GPUmemory will be fragmented,
leaving the project in a state of poor performance while the GPU tries to defragment it’s memory.

The two diagrams below try to outline memory fragmentation in the simplest way possible.

There are two case studies, both with similar parameters: There are 3GB of GPU RAM and there are
three 1GB static textures to load and hold in RAM indefinitely.

Memory Fragmentation

In Case 1, the 3GB GPU of RAM would be able to perfectly fit the three 1GB static textures. They
are called static textures because once they’ve allocated to memory, they aren’t changed. This is the
equivalent to loading a large image into a Movie In TOP at the start of a project and leaving it there
indefinitely.

This is a perfect world situation, as there are many other processes that use GPU RAM, meaning
resources are constantly in flux, and there would never be 3GB of free RAM on a graphics card that
only has 3GB of GPU RAM.

Case 2 describes a situation where memory fragmentation will occur. To the already existing three
1GB textures, a 200MB texture is added to the mix. In this example, the loading and unloading is to
happen in the following order:

1. Load 1GB texture

11 Optimization 100

2. Load 200MB texture
3. Load 1GB texture
4. Unload 200MB texture
5. Load 1GB texture

This would simulate a situation where a texture is loaded, displayed, and then replaced with another
texture.

Memory Fragmentation 2

In diagram ‘Case 2.1’, Steps 1 through 3 are completed, and there is 800MB free. At first glance, this
might seem perfect, because if the 200MB texture is unloaded, there would be 1GB of free space for
the final texture. Unfortunately, this isn’t how graphics cards work.

Memory Fragmentation 3

As seen above, in diagram ‘Case 2.2’, Step 4 has been completed, and the 200MB texture has been
unloaded. What remains is a prime example of GPU memory fragmentation. There is a total of
1GB of free GPU memory, but there isn’t a single block of 1GB to allocate to the 1GB texture. The
already-loaded 1GB textures, in their static state, can’t be shifted in the GPU memory without a full
unload and reload process occurring, and because the memory can’t be shifted, the 200MB of free
space has been trapped between the static textures. This 200MB allocation can be filled with 200MB
or smaller textures, but it will not be able to load the third 1GB static texture.

11 Optimization 101

The best way to prevent heavy memory fragmentation is to try to and restrict the amount of varying
resolutions in a project. When an asset is swapped out for one that is the same resolution, often times
it can take it’s place in the memory.

11 Optimization 102

11.7 Windows System Processes

Windows is a complex operating system, and there are many processes and system-related
applications running behind the scenes. Many of these processes and applications can negatively
impact performance of a computer, and TouchDesigner.

Windows ismade for a largemarket of consumers, who primarily use their computers during the day.
Because of such, there are many applications and Windows system operations that are scheduled to
run if a computer is left powered-on overnight. This can be problematic for performance installations
that run 24 hours a day. Depending on the needs of the installation or performance, many different
applications and system related tasks can, and should, be turned off and rescheduled.

Applications such as virus and spyware scanning softwares, albeit useful for daily computing, should
generally be avoided when using TouchDesigner. Virus and spyware softwares can cause a number
of issues, the first being pop-ups.Many of these softwares display pop-up reminders and notifications
at regular intervals. In unfortunate situations, these can overlap with displayed content and cover
outputs during performances and installations. These applications can negatively effect the hard
drive as well, as they often scan the system for viruses and malware, using up hard drive read
\& write cycles. These two issues are aside from the CPU toll that many of these ever-running
applications can incur.

12 GLSL
12.1 Introduction

GLSL, or OpenGL Shading Language, is an incredible tool to have in one’s back pocket. With a little
bit of code, one can program directly on the GPU.

Many avoid learning GLSL because they believe that it is only useful for working with large textures
(4K and beyond), complex 2D generative visual scenes, or creating and manipulating 3D geometry,
but it can be used in so many facets of day to day programming. Whether that be optimizing and
creating incredibly effecient compositing workflows for standard HD content, or creating simple
generative backgrounds for interactive experiences.

The goal of this chapter is to introduce the reader to some basic GLSL workflows and techniques,
with the assumption that the reader has no previous GLSL experience.

12 GLSL 104

12.2 Types of Shaders and Rendering Pipeline

The two main types of shaders that can be programmed in TouchDesigner are the Vertex shader and
the Pixel (or Fragment) shader. In a standard rendering pipeline, they are processed in that order, as
can be seen in the diagram below:

GLSL Pipeline

There is also a geometry shader that can be applied between the Vertex and Pixel shaders for layered
rendering and transform feedbacks, but it is not used commonly.

In the above pipeline, the application passes the vertex and primitive data to the GPU. This includes
information such as vertex position, texture coordinate, color, normal, etc. This information can be
programatically processed and worked with by using a Vertex shader.

When the Vertex shader has finished processing the vertex and primitive data, the geometry is
rasterized. During this process, the geometry goes through various stages such as clipping, culling,
transformations to window space, etc. These stages prepare fragments that will be processed by the
Pixel shader.

The Pixel shader takes these fragments, processes them, and outputs the color and depth data for
each pixel.

For a more in-depth look at the render pipeline, there is a more thorough explanation on the OpenGL
website:

http://www.opengl.org/wiki/Rendering_Pipeline_Overview¹⁰

¹⁰http://www.opengl.org/wiki/Rendering_Pipeline_Overview

http://www.opengl.org/wiki/Rendering_Pipeline_Overview
http://www.opengl.org/wiki/Rendering_Pipeline_Overview

12 GLSL 105

12.3 Debugging

Before getting too deep into the world of GLSL, it is important to know how to debug compiling
issues. There are two signs that denote a compiling error.

The first is a blue and red checker pattern. When working with the GLSL MAT, this check pattern
will be on the geometry itself. When using GLSL with TOPs, this checker pattern will fill up the
Operator’s viewer and be output from the TOP.

The second sign of a compile error is a yellow triangle warning flag on the Operator. Upon clicking
and holding the left mouse button on the flag, the error will read:

1 Warning: The GLSL Shader has compile error

To diagnose these issues, an Info DAT is required. Create an Info DAT, and set the ‘Operator’
Parameter to reference the GLSL operator with the error. In the Info DAT, if there are no errors,
there will be only a few lines and of them will read ‘Compiled Successfully’ or ‘Linked Successfully’.
If there are errors however, they will read more like:

1 Pixel Shader Compile Results:

2 0(3) : error C0000: syntax error, unexpected '=', expecting '::' at token '='

To quickly break this down, the first thing is the line number. In this case, ‘0(3)’ means the compiler
is encountering errors at line 3. In many situations, this may mean that the actual mistake happens
a line or two earlier, but the compiler doesn’t halt until the next line when things stop making sense
for it.

The next section highlights that this is a syntax error, and then there is more information about the
error.

For beginners, the majority of these errors will be because of forgotten semi-colons at the end of
lines, or errors trying to cast one data type into another incompatible data type.

12 GLSL 106

12.4 Shaders in 3D

Let’s start by looking at a few very simple 3D scenes that utilize Vertex and Pixel shaders.

Open example ‘Basic_3D.toe’.

This is a simple render setup where the vertex shader does nothing but pass the vertices to the pixel
shader, which then colors everything white. Let’s take a more in-depth at each shader, starting with
the Vertex shader:

1 void main(){

2 gl_Position = TDWorldToProj(TDDeform(P));

3 }

Since this is written for someone with no GLSL experience, a few notes about basic C syntax and
rules that need to be followed, since GLSL is very similar to C.

The first thing is that semi-colons need to be added at the end of working lines of code.

The second thing is that most of the working code will be inside of the main() loop. For beginners,
the only things outside of the main loops will be the delcaring of variables such as input and output
streams and attributes.

When starting an empty shader, it’s good practice to start by entering the main() loop as follows:

1 void main(){

2

3 }

In this vertex shader, there is only have one line of code:

1 gl_Position = TDWorldToProj(TDDeform(P));

Let’s break this down from right to left, as there is a lot going on here.

‘P’ in this instance is the vertex position. In TouchDesigner, there are a few attributes that are
declared by default. For instance, ‘P’ is the vertex position, ‘N’ is the normal, ‘Cd’ is the color,
and ‘uv’ is the texture coordinate layers (it is an array that is accessed by index, i.e. uv[0], uv[1],
etc). These values can be accessed as easily as we’ve accesed ‘P’.

In the line of code, ‘P’ is input into a function named ‘TDDeform()’. This function takes the vertex
position from object space and returns the position in world space.

Think of object space as if each object in the 3D world had it’s own co-ordinate system and 0,0,0
point. After processing these vertices, they have to be transformed and integrated into world space.

12 GLSL 107

World space is, as the name implies, the full world. The world, in this case, is the common coordinate
system, with one 0,0,0 point, where all objects will exist together.

Once the vertex positions are returned in world space, they are passed to the function ‘TDWorldTo-
Proj()’. This function takes the world space co-ordinates and returns them in projection space. The
projection space takes all the co-ordinates from the world space, and returns them from a camera’s
point of view.

These values are then assigned to the variable ‘gl_Position’, which is a built-in output for the
transformed vertices.

As shown in the rendering pipeline diagram, these transformed vertices are processed and passed
to the Pixel shader, where they will be assigned color values.

In this example, the Pixel shader sets the color output of all the fragments to white. The code is
below:

1 out vec4 fragColor;

2 void main(){

3 fragColor = vec4(1,1,1,1);

4 }

Similar to the Vertex shader, all of the code except for the output declaration are inside of the main()
loop, and there are semi-colons at the end of lines of code.

Starting from the top, there is this line of code:

1 out vec4 fragColor;

This line sets the output as a variable called ‘fragColor’. A ‘vec4’ is a vector with 4 components,
and in this scenario, they correspond to the output red, green, blue, and alpha channels. In GLSL,
whenever declaring an input or output, the type must be declared as well, thus the specification that
it will be a ‘vec4’. Similarly, inputs will be prefaced by ‘in’ and outputs will be prefaced by ‘out’.

The line of code inside of the main() loop is as follows:

1 fragColor = vec4(1,1,1,1);

As ‘fragColor’ has already been declared as the output, this line writes the pixel values directly to
the output. The section ‘vec4(1,1,1,1)’ creates a 4-component vector with the values 1,1,1,1, and then
assigns it to ‘fragColor’. ‘vec4’ has to precede the list of values because ‘fragColor’ has already been
declared as a vec4, so to assign a value to it, that value needs to be a ‘vec4’.

Because the 4 components of the output correspond to RGBA channels, (1,1,1,1) would set all of the
channels to 1, effectively setting the output to white for every pixel.

12 GLSL 108

Now with a basic understand of working with shaders in a 3D scene, let’s add a few levels of
complexity. For starters, let’s resize the box. This is as simple as multiplying each of the vertex
positions, or ‘P’, by a value.

Open example ‘Basic_3D_scaled.toe’.

Only a few lines of the vertex shader are changed:

1 vec3 scaledP;

2

3 void main(){

4 scaledP = P * 0.5;

5 gl_Position = TDWorldToProj(TDDeform(scaledP));

6 }

The first this that is added is a declaration for a variable that is going to be used, named ‘scaledP’.
This is going to be a 3-component vector because we’ll be working with the vertex position, ‘P’,
which is also a 3-component vector.

Once the variable is defined, it can be used throughout the code. The next line that is added is:

1 scaledP = P * 0.5;

This line takes the vertex position, multiplies all the values by 0.5, effectively making the box half
the size. Similarly, a value of 2 would make the box be double it’s original size.

This new value, ‘scaledP’, then replaces ‘P’ below:

1 gl_Position = TDWorldToProj(TDDeform(scaledP));

Similarly, to transform the box instead of scaling it, values need to be added or subtracted to the
various axis.

Open example ‘Basic_3D_transform.toe’.

In this example, The code in the vertex shader has been changed as below:

1 vec3 transformedP;

2

3 void main(){

4 transformedP = P + vec3(1,0,0);

5 gl_Position = TDWorldToProj(TDDeform(transformedP));

6 }

12 GLSL 109

This is very similar to the above example. It starts off by declaring a 3-component vector named
‘transformedP’. In the first line of the main() loop, instead of multiplying the vertex positions by 0.5,
the new 3-component vector is being added to them.

The reason to use a ‘vec3’ in this example is that if 0.5 was simply added to ‘P’, it would add 0.5 to
the x-axis, 0.5 to the y-axis, and 0.5 to the z-axis. Creating a ‘vec3’ for these values allows control
over each specific axis. In this example, adding ‘vec3(1,0,0)’ will only add 1 to the x-axis, leaving the
y-axis and z-axis untouched. In practice, this moves the box 1 unit to the camera’s right.

We could just as easily change from addition to subtraction to move the box in the other direction.

Now, let’s reference an LFO CHOP from the vertex shader to animate the movement.

Open example ‘Basic_3D_LFO.toe’.

For this to be achieved, an LFO CHOP was created. The value of it’s channel was then exported
to the GLSL MAT’s parameter ‘value0x’ in the ‘Vectors 1’ tab of the Parameter window. Then the
Uniform was given a name, in this case ‘lfoCHOP’. This means the value can now be accesed from
within the vertex and pixel shaders.

The code in the vertex shader has been changed as follows:

1 vec3 transformedP;

2 uniform float lfoCHOP;

3

4 void main(){

5 transformedP = P + vec3(lfoCHOP,0,0);

6 gl_Position = TDWorldToProj(TDDeform(transformedP));

7 }

The first addition is in the second line, where a ‘uniform’ is declared. A ‘uniform’ is a global GLSL
variable that is mainly used for parameters that a user or program will pass into the shader.

In this example, the LFO CHOP channel is a float value, so then ‘float’ is added after ‘uniform’. The
name of the uniform is important, because it must correspond to the name entered in the ‘Uniform
Name’ parameter in the GLSL MAT. In the GLSL MAT, we named the uniform ‘lfoCHOP’, so to
access it, the same name must be used.

The only other change is that where previously 1 was being added to the x-axis of the vertex position,
there is now the value of ‘lfoCHOP’.

1 transformedP = P + vec3(lfoCHOP,0,0);

With those small changes, a CHOP is controlling the x-axis position of the shader. Pixel shaders
function in much of the same way as Vertex shaders. Let’s assign the LFO CHOP in the previous
example to control the red channel of the output color.

Open example ‘Basic_3D_red.toe’.

12 GLSL 110

In this example, the LFO CHOP is controlling the red channel of the pixel shader in much the same
way that the LFO CHOP is controlling the x-axis transform.

The code in the Pixel shader is below:

1 out vec4 fragColor;

2 uniform float lfoCHOP;

3

4 void main(){

5 fragColor = vec4(lfoCHOP,0,0,1);

6 }

Similarly to the x-axis transform example, the only steps needed were to declare the incoming
uniform, and then to assign it to a parameter, in this case the first component of the vector. To
take this another step furtuer, let’s sample a Ramp TOP as the texture, instead of just outputting a
single color.

Open example ‘Basic_3D_texture.toe’.

The first thing that was done was create the Ramp TOP and assign it to the GLSL MAT. The TOP
needs to be referenced in the ‘Samplers 1’ tab in the Paramter window. In the same way that the
LFO CHOP needed a ‘Uniform Name’, the Ramp TOP needs a ‘Sampler Name’, which in this case is
‘rampTOP’.

Then a Texture SOP is added after the Box SOP to assign the texture co-ordinates.

In the Vertex shader, a few lines of code are added to assign the texture co-ordinates. These lines are
added below:

1 vec3 transformedP;

2 uniform float lfoCHOP;

3 out vec2 texCoord0;

4

5 void main(){

6 transformedP = P + vec3(lfoCHOP,0,0);

7 gl_Position = TDWorldToProj(TDDeform(transformedP));

8

9 vec3 texCoord = TDInstanceTexCoord(uv[0]);

10 texCoord0.st = texCoord.st;

11 }

The first line that is added is:

1 out vec2 texCoord0;

12 GLSL 111

This line outputs a 2-component vector named ‘texCoord0’ which can be used in the pixel shader.
In this case, they will be the texture UV co-ordinates.

There is one more additional line:

1 texCoord0.st = uv[0].st;

This line takes ‘texCoord0’ that was declared earlier, and assigns it the built-in TouchDesigner
variable ‘uv’, which as mentioned earlier is declared by default and contains the UV texture co-
ordinates (similar to ‘P’ for vertex position).

The ‘.st’ here is assigning the two values contained in the 2-component vector ‘uv’ to the 2
components of ‘texCoord0’. As mentioned earlier, where ‘.xyzw’ are used for vertex positions, ‘.stpq’
are often used for texture co-ordinates. These are mostly just for convention so that the same letters
(such as XYZW and RGBA) don’t meanmultiple different things. You may also see ‘.uv’ used instead
of ‘.st’, depending on the software package.

With these two extra lines of code, the Box SOP is now being textured by the Ramp TOP.

12 GLSL 112

12.5 Shaders in 2D

Even if one doesn’t want to spend a ton of time learning about GLSL for 3D use, the Pixel shader
can be extremely useful as a tool for generative visuals and compositing 2D textures. Simple GLSL
shaders can be especially useful when compositing textures, as it can save quite a lot of graphics
memory when doing repititious work.

Let’s take a look at an example of adding two TOPs together, similar to a Add TOP.

Open example ‘Basic_2D_add.toe’.

Using the GLSL TOP, multiple TOP inputs can be composited, sampled, and effected in a GLSL pixel
shader. In this example, a Movie In TOP and a Constant TOP are input into the GLSL TOP. The GLSL
code in the pixel shader, adds them together:

1 out vec4 fragColor;

2

3 void main(){

4 vec4 in1 = texture(sTD2DInputs[0], vUV.st);

5 vec4 in2 = texture(sTD2DInputs[1], vUV.st);

6 fragColor = in1 + in2;

7 }

Working with Pixel shaders in the TOP family is very similar to working with them using a GLSL
MAT. There is still a main() loop, the declarations happen first before the main() loop, and there are
semi-colons at the end of working lines of code.

The first difference to notice is how inputs are handled. In this example there are two inputs, and
there are two lines that deal with those inputs:

1 vec4 in1 = texture(sTD2DInputs[0], vUV.st);

2 vec4 in2 = texture(sTD2DInputs[1], vUV.st);

To get access to a TOP input, a 4-component variable must be declared for the RGBA channels.
The texture() function is used to sample a texture. It takes two arguments, the first is the texture
that it is going to sample, which in these cases are TOP inputs. The second argument is the texture
co-ordinate to sample.

In this case, since TOP inputs are being sampled, the built-in sampler array named ‘sTD2DInputs’
is used. This array is accessed by index. In this case, there are two TOP inputs, so ‘sTD2DInputs[0]’
is used to access the first input, and ‘sTD2DInputs[1]’ is used to access the second.

To access the proper texture co-ordinate, ‘vUV.st’ is used. ‘vUV’ is a built-in variable that contains
the texture co-ordinates of the pixel. As mentioned, ‘.st’ is used to access the first two components
of the vector.

12 GLSL 113

Once the appropriate pixel is addressed from each input, this example procedes to add the pixels
together, and output them to ‘fragColor’, which is the defined output:

1 fragColor = in1 + in2;

As simple as that, a main functionality of the Add TOP has been replicated. This may seem like
a round-about way of adding two textures, but the benefits of something as simple as this begin
to become apparent when using more complicated workflows or the GLSL Multi TOP, which is
fundamentaly the same as the GLSL TOP, except that it has an infinite number of TOP inputs (limited
only by the graphics card).

Open example ‘Basic_2D_multi.toe’.

This example expands on the previous example by adding together more sources. This is done by
connecting all the sources into a GLSL Multi TOP, and then accesing them in the same way that the
two inputs were accessed previously.

In the shader of this example, each input takes the next index of ‘sTD2DInputs’ and assigns it to
another ‘vec4’, after which they are all added together.

Again, this might be useful, but a Composite TOP can add multiple inputs s well, so let’s take it one
step further.

Open example ‘Basic_2D_composite.toe’.

This example takes the previous example a step further. With all the inputs defined, instead of just
adding all the inputs together, the GLSL code does a mix of addition, subtraction, and multiplication.
Remembering the order of operations when working like this is key!

This is incredibly useful when working with a large number of textures, even if just 1920x1080,
because doing a similar process with TOPs would take multiple Composite TOPs, or a number of
Multiply, Add, and Subtract TOPs. Being able to manipulate all these textures, even in such simple
methods, all at once can save quite a bit of GPU memory.

Transforming the textures is very similar to transforming vertices in a vertex shader. Let’s take a
look at an example.

Open example ‘Basic_2D_transform.toe’.

This example takes the previous example, and offsets a few of the textures. This is done by adding,
subtracting, multiplying, and dividing the texture co-ordinate. Let’s examine the example code
below:

12 GLSL 114

1 out vec4 fragColor;

2

3 void main(){

4 vec4 in1 = texture(sTD2DInputs[0], vUV.st * 0.5);

5 vec4 in2 = texture(sTD2DInputs[1], vUV.st);

6 vec4 in3 = texture(sTD2DInputs[2], vUV.st - vec2(0.5,0.25));

7 vec4 in4 = texture(sTD2DInputs[3], vUV.st);

8 vec4 in5 = texture(sTD2DInputs[4], vUV.st + vec2(0.5,0.));

9

10 fragColor = in1 + in2 * in3 - in4 * in5;

11 }

In the above example, three of the textures are being transformed. The first is being scaled up by
a factor of two. To do this, ‘vUV.st’ is multiplied by 0.5. This may seem backwards, but remember
that ‘vUV’ is the texture co-ordinates, so when both x-axis and y-axis co-ordinates are moved to
the right, the image moves to the left. Imagine having a finger pointing into the center of a piece
of paper. If the finger position is moved to the right, the image will be more to the left of the finger
than before. This is an overtly simple example, but should help get the idea across.

The third input, ‘in3’, has been translated on both x-axis and y-axis by subtracting 0.5 from the
x-axis, and 0.25 from the y-axis.

The final input, ‘in5’, has been translated on the x-axis by adding 0.5 to the x-axis.

Both of these two tranformations also follow the same thought process mentioned for the first
transformation. For example, when adding 0.5 to the x-axis texture co-ordinates, they are being
added to the texture co-ordinates and not the position of the image. Thus when the texture co-
ordinates move 0.5 on the x-axis, the image appears to move to the left.

The final example will be to take the previous exampleoutputs each individual layer to a separate
color buffer instead of compositing them.

Open example ‘Basic_2D_buffers.toe’.

The shader is as follows:

1 out vec4 fragColor[5];

2

3 void main(){

4 vec4 in1 = texture(sTD2DInputs[0], vUV.st * 0.5);

5 vec4 in2 = texture(sTD2DInputs[1], vUV.st);

6 vec4 in3 = texture(sTD2DInputs[2], vUV.st - vec2(0.5,0.25));

7 vec4 in4 = texture(sTD2DInputs[3], vUV.st);

8 vec4 in5 = texture(sTD2DInputs[4], vUV.st + vec2(0.5,0.));

9

10 fragColor[0] = in1;

12 GLSL 115

11 fragColor[1] = in2;

12 fragColor[2] = in3;

13 fragColor[3] = in4;

14 fragColor[4] = in5;

15

16 }

The first line of the shader has been modified so that the output ‘fragColor’ is now an array. Each
component of the array can be assigned a different texture, as has been done at the end of the shader.
At which point, with the ‘# of Color Buffers’ parameter for the GLSL Multi TOP set to 5, Render
Select TOPs can be used to individually select each of the separate color buffers from inside of the
GLSL Multi TOP using the. To do this, the ‘Render or GLSL TOP’ parameter references the GLSL
Multi TOP, and the ‘Color Buffer Index’ parameter is set to the target color buffer.

Assigning textures to the color buffers is similar to assigning textures to a single output, with the
addition of the color buffer index:

1 fragColor[0] = in1;

The number in the square brackets refers to the buffer being written to. In the above example, the
first buffer is being written to.

12 GLSL 116

12.6 Importing Shaders from Shadertoy

Chapter by Matthew Hedlin

This section will demonstrate the basics of porting a shader from Shadertoy.com to TouchDesigner.
We recommend using a feature-rich code editor, such as Sublime Text, Atom, or Notepad++, as there
a strong Find-and-Replace function is essential.

Shadertoy API

When porting a shader from Shadertoy to TouchDesigner, you can either use your judgement and
find/make sources that work similary to the built-in inputs in Shadertoy, or you can download the
sources that were used on Shadertoy using their API. To download the shader’s input sources, you
have to set up a Shadertoy account and create an ‘App Key’.

To create an ‘App Key’, once you’re logged into Shadertoy, click on Profile at the top right, then
click on your Apps in the ‘Config’ section. Choose a name and description, and click the ‘Create’
button.

You’ll see the App Key in the ‘Manage YourApps’ section. Now, copy this URL https://www.shadertoy.com/api/v1/shaders/MdlGDM?key=
into your browser, and enter your App Key at the end.

After you press enter, the response will be a JSON object with a key called inputs. In this example,
the URL above requires the file called tex09.jpg.

If you enter https://www.shadertoy.com/presets/tex09.jpg, as the URL in your browser, you will
see and be able to download the required texture.

Swizzling

Swizzling is the method of accessing the components of a vector. You’ll come across this a few times
in these examples.

If there is a variable vec4 color, the 4 values of color are represented as color.rgba. If you want
to access just the first 2 values of the vector you could use color.rg If you want to rearrange the
values of the vector, you could write color.bgar

There are equivalents to .rgba that do the exact same thing, but are generally used in different
situations to provide clarity when reading the code.

In general, when referring to texture coordinates, .stpq is used. When referring to 3D coordinates,
.xyzw are used.

While these conventions do the same thing, they can not be combined. To refer to the four values
of vec4 a we could use a.xyzw, or a.stpq, but we could not use a.stzw This will create an error.

12 GLSL 117

Troubleshooting

A common error encountered when converting Shadertoy shaders is related to the UV extend
default. If you find the results of your shader don’t match the results on the Shadertoy website,
try setting the Input Extend Mode UV parameter of the ‘GLSL’ TOP to Repeat.

Swizzling

Swizzling is the method of accessing the components of a vector. You’ll come across this a few times
in these examples.

If there is a variable vec4 color, the 4 values of color are represented as color.rgba. If you wanted
to access just the first 2 values of the vector you would use color.rg. If you wanted to rearrange
the values of the vector, you could write color.bgar

There are equivalents to .rgba that do the exact same thing, but are generally used in different
situations to provide clarity when reading the code.

In general, when referring to texture coordinates, .stpq is used. When referring to 3D coordinates,
.xyzw are used.

While these conventions do the same thing, they can not be combined. To refer to the four values
of vec4 a we could use a.xyzw, or a.stpq, but we could not use a.stzw. This will create an error.

Example 1: Waterly Video - Test

Example 1: Waterly Video - Test

Shader written by: FabriceNeyret2¹¹

https://www.shadertoy.com/view/MdlGDM

Setup

Start by creating a ‘GLSL’ TOP and an ‘Info’ DAT. Put the ‘GLSL’ TOP’s name in the ‘Info’ DATs
Operator field.

On the the ‘GLSL’ TOPs Common page, change the Output Resolution to Custom and then enter 1280
and 720 in the Resolution fields.

¹¹https://www.shadertoy.com/user/FabriceNeyret2

https://www.shadertoy.com/user/FabriceNeyret2
https://www.shadertoy.com/user/FabriceNeyret2

12 GLSL 118

Copy the code from Shadertoy and paste it into the glsl1_pixel DAT, replacing the code that was
there by default.

Now we need to set up the sources. For this example, we’re just going to create two ‘Movie File
In’ TOPs and select two pictures that are the same resolution as the ‘GLSL’ TOP (1280 x 720),
‘Mettler.3.jpg’ and ‘Trillium.jpg’.

Main Function and its Parameters

In Shadertoy, the main function and paramters are:

mainImage(out vec4 fragColor, in vec2 fragCoord)

but we’ll change that to:

main()

To replace the fragColor argument that we removed, we’ll go up to the top of the code and insert:

layout(location = 0) out vec4 fragColor;

Next, we’ll search for all references to fragCoord and replace them with gl_FragCoord.

‘ uniform vec3 Resolution;

uniform float iGlobalTime; ‘

Uniform Inputs

Shadertoy contains a list of built-in uniform variables. You can view them on the Shadertoy website
at the top of the code window by clicking an arrow labled ‘Shader Inputs’, or you can click the ‘?’
at the bottom right of the same code window to create a pop up window that contains ‘Shadertoy
Inputs’ as well as other information. We will go through the main samplers and uniforms associated
with Shadertoy shaders.

Samplers

Shadertoy has named their sampler inputs iChannels.These samplers can be images, videos, noise
patterns, cube mabs, etc. The ‘GLSL’ TOP has a similar variable called sTD2DInputs. The Shadertoy
samplers are individual numbered samplers, such as iChannel0 and iChannel1. In TouchDesigner,
sTD2DInputs is an array, so you can access an elements with a numeric index.

Now, search through the code and wherever there is the a reference to iChannel0, replace that with
sTD2DInputs[0]. Where there is a reference to iChannel1, replace that with sTD2DInputs[1].

12 GLSL 119

iGlobalTime

To find out what type of uniform this needs to be, look at the list of ‘Shader Inputs’ on Shadertoy
mentioned previously. In the list, iGlobalTime is a float, so near the top of our code, below the
fragColor declaration, we’ll write:

uniform float iGlobalTime;

Next, we click on the ‘GLSL’ TOP in TouchDesigner, and go to the Vectors 1 page in the parameter
window.

As the first Uniform Name we’ll write iGlobalTime and for the value we will reference TouchDe-
signer’s seconds member of the absTime class by entering:

absTime.seconds

It should look like this:

iGlobalTime : absTime.seconds

iResolution

iResolution is the resolution of the Shader on Shadertoy. If our resolution depended on one of our
inputs, we could use TouchDesigner’s built-in array of objects:

uTD2DInfos[i].res

In this case you could add .zw on the end to retrieve the width and height in pixels, or you can add
.xy to receive the result of 1.0 divided by the width and 1.0 divded by the height.

For this example, we will manually declare iResolution as a uniform. If we look at Shadertoy’s input
list, we see that iResolution is a vec3. Similar to iGlobalTime, we’ll first declare it in the code by
going near the top of our code and writing the line:

12 GLSL 120

uniform vec3 iResolution;

Next, go to the Vectors 1 page of the ‘GLSL’ TOPs parameters, and next to the second Uniform

Name, enter iResolution. For its values, enter 1270 and 720. We won’t need the 3rd value of the vec3
for this, so we’ll just leave the other 2 values as 0

Your GLSL TOP should now compile successfully and look something like this :

Example 1 compiled

12 GLSL 121

Example 2: Shard

Example 2: Shard

Shader written by: simesgreen ¹²

https://www.shadertoy.com/view/Xdf3zM

This example will take you a bit further, using cubemaps, creating a noise sampler, using sound, and
adding mouse interaction.

Setup

We will start off with a new TouchDesigner project and begin the same way we did for the last
example.

Create a ‘GLSL’ TOP and set its Output Resolution to 1280 and 720.

Create an ‘Info’ DAT and add a reference to the ‘GLSL’ TOP to it’s Operator parameter.

Copy the code from Shadertoy into glsl1_pixel.

If we look at the shader on the Shadertoy website, at the bottom we can see that we require 3 inputs:
a noise texture, a background image, and some sound/audio.

Noise Texture

In Shadertoy there are 4 noise textures: a monochrome and color noise at a resolution of 64 x 64,
and a monochrome and color noise with a resolution of 256 x 256.

For this example, create a ‘Noise’ TOP and set the resolution to 64 x 64 in the Common settings. We
can look at the noise texture on Shadertoy and estimate the settings. These are the settings you can
use for now:

¹²https://www.shadertoy.com/user/simesgreen

https://www.shadertoy.com/user/simesgreen
https://www.shadertoy.com/user/simesgreen

12 GLSL 122

Ex2: Noise

Background Image

If you click on ‘iChannel1’ in Shadertoy, you’ll see it is a texture from the ‘Cubemaps’ section. There
is a link to the source:

http://www.pauldebevec.com/Probes

Near the bottom of that page, are cube-format images that we can download. The LDR .tif image that
matches the one used in the Shadertoy shader is at the bottom right, called Uffizi.tif. Download
that image.

Create a ‘Movie File In’ TOP in TouchDesigner and reference the downloaded file.

Connect the new ‘Movie File In’ TOP to a ‘Cube Map’ TOP.

Set the Input Layout to Vertical Cross and connect the ‘Cube Map’ TOP to the second input of
glsl1.

12 GLSL 123

Ex2: Cube Map

Audio

‘iChannel2’ in Shadertoy is set to a Soundcloud input, but we can use any audio that we’d like, inside
of TouchDesigner. For now, we’ll just stick with the default audio track in the ‘Audio File In’ CHOP.

We need to prepare the audio for the ‘GLSL’ TOP, since we can’t directly connect an ‘Audio’ CHOP
to a ‘GLSL’ TOP. Line 35 of the GLSL code is commented out, stating that you can use this line of
code if you don’t have audio, but we won’t do that. In the next line, the variable d is looking for a
texture with the comment move planes with music. The easiest way to achieve a simple version
of this is to convert the ‘Audio File In’ CHOP into a texture.

We only want one sample for this example, so put an ‘Analyze’ CHOP after the ‘Audio File In’ CHOP
and set the Function to Maximum.

We may want to adjust this value later, so put a ‘Null’ CHOP after that.

Now create a ‘CHOP To’ TOP that references the ‘Null’ CHOP. Set the Data Format to R.

Connect the ‘CHOP To’ TOP to the third input of the ‘GLSL’ TOP.

The network should look like this:

Ex2: Audio

12 GLSL 124

Now that the inputs are set up, we can take a look at the InfoDAT and see what we’ll need to change
in the code.

Main Function and fragColor

First we’ll change the name of themain function from mainImage to main and remove the parameters,
so instead of:

void mainImage(out vec4 fragColor, in vec2 fragCoord)

we should just have:

void main()

Now, we have to replace the 2 parameters we removed from the main function: fragColor, and
fragCoord. Go to the very top of the code and insert:

layout(location = 0) out vec4 fragColor;

Now you can search for all references to fragCoord (there should only be one, which is in the first
line of the main function) and replace it with the built in variable gl_FragCoord.

Samplers

iChannel0

Similar to the last example, iChannel0 is a 2D input, so we’ll find all iChannel0 references and replace
them with sTD2DInputs[0]. In GLSL 3.30 and later, we don’t need to use a different texture()
function for different texture types, so use Find-and-Replace to replace all texture2D functions to
texture. texture2D may will still work on some drivers, but will not on many so to ensure your
shader works on all GPUs and driver versions, you’ll want to change these. As of the latest update
to this article, the shader correctly has texture() calls instead of texture2D(), so no changes are
needed.

Ex2: texture

iChannel1

Changing the code for iChannel1 is similar to the edits for iChannel0, but the input is a cube map.
TouchDesigner sorts the types of inputs for us: 2D, 3D, Cube, etc, into separate arrays. If this was
another 2D inputs we would use sTD2DInputs[1], but since it’s a cube map (the first and only in
our inputs) we use sTDCubeInputs[0].

Similarly as mentioned for iChannel0, if the shader had textureCube calls, they should be changed
to texture. It doesn’t have those calls anymore though, so no changes are needed.

12 GLSL 125

iChannel2

iChannel2 is the audio. We converted the audio information into a 2D texture with the ‘CHOP To’
TOP. The ‘CHOP To’ TOP is the 3rd input, but it is the 2nd 2D input, so we’ll replace all iChannel2
references with sTD2DInputs[1].

If you save the shader and look at the ‘Info’ DAT, you should have fixed all of the errors except for
‘iMouse’.

iMouse

To find out what we need in order to mimic Shadertoy’s iMouse uniform, we need to go back to
the Shader Input list. Click the question mark at the bottom right of the window, and if you scroll
down, you’ll find iMouse:

Ex2: iMouse Definition

iMouse is a vec4 with the 4 values defined as:

xy = current pixel coords (if LMB is down). zw = click pixel

For now, we’ll just set up the uniform with the basics so that the shader renders without errors. Add
iMouse as a Uniform Name to the Vectors 1 page of the ‘GLSL’ TOP parameters, and set all the values
to 0.
 Now add:

uniform vec4 iMouse;

after the other uniform declarations near the top of the code.

The ‘GLSL’ TOP should now be free of errors, and should look something like this:

Ex2: iMouse success

12 GLSL 126

iMouse Functionality

Let’s go back to the description of what iMouse does:

xy = current pixel coords (if LMB is down). zw = click pixel

We can also see an example of iMouse in action in this shader:

https://www.shadertoy.com/view/Mss3zH.

So .xy are the coordinates of the mouse while the LMB is clicked. .zw are the coordinates of where
the mouse was when it was first clicked. We’ll have to set up a little CHOP network to re-create this
data.

We could use the ‘Mouse In’ CHOP, but I’d like to only have the mouse only interact with the shader
when it’s deliberate.

Create a ‘Container’ COMP, set the Width and Height to the same dimensions as the ‘GLSL’ TOP,
which in this case are 1280 and 720. Set the ‘GLSL’ TOP as the Background of the container in the
panel settings. Now make a ‘Panel’ CHOP and set a reference to your container as the Component

parameter.

We’ll want to select 3 values from the ‘Panel’ CHOP: u, v, and lselect. To do this, add 3 ‘Select’
CHOPs and connect panel1 to each one of them in parallel.

In ‘select1’, under Channel Names, enter u. We’ll rename right away, so in the Rename From field enter
u and in the Rename To field enter x. In select2, select the v channel, and just like before, rename
from v to y. For select3, we don’t need to rename anything, so just enter lselect in the Channel

Names field.

We’ll need to convert these values from 0 - 1 values to the full resolution. Add a ‘Math’ CHOP
after select1 and set the Multiply parameter to 1280. Add a Math CHOP after select2 and set the
Multiply parameter to 720.

Now, create a ‘Merge’ CHOP and connect math1 and math2 to it. As always, add a ‘Null’ CHOP after
that. So far, it should look like this:

Ex2: iMouse Network

12 GLSL 127

Nowwe have our ‘.xy’ values, so nowwe need to set up the ‘.zw’ values. We need to read the position
of the mouse when the LMB is first clicked, and hold that value until LMB is released.

To do this, create a ‘Chop Execute’ DAT and set the CHOP field to select3. Turn the Off to On and On

to Off toggles on, and set the Value Change toggle to off. Add a ‘Constant’ CHOP to the network
and in the first two Name fields, create the channels z and w. This should look like this:

Ex2: iMouse Constant CHOP

When the LMB is clicked, we want to write the values of null2 to thez and w channels of constant1,
and when it’s released, we want to set them back to 0.

Add the following code snippet to the ‘offToOn’ function:

1 z = op('null2')['x']

2 w = op('null2')['y']

3 op('constant1').par.value0 = z

4 op('constant1').par.value1 = w

And add the following code to the ‘onToOff’ function:

1 op('constant1').par.value0 = 0

2 op('constant1').par.value1 = 0

You can use another ‘Merge’ CHOP to merge constant1 with null2 and add another ‘Null’ CHOP
after it. Go back to the ‘GLSL’ TOP and in the four Value fields of the iMouse uniform, you can
reference the x, y, z, and w channels of null3. You can do this with Python references or exports.

The ‘Vectors 1’ page should now look like this:

12 GLSL 128

Ex2: Final iMouse Network

If you view the container, you should now be able to click and drag to rotate around the Shard!

Example 3: Cyclic Cellular Automaton

Ex2: Example 3: Cyclic Cellular Automaton

shader written by: zolozulman¹³

https://www.shadertoy.com/view/4tV3Wd

Shadertoy has implemented the use of multiple buffers, separating functions into separate processes.
This example demonstrates one way of importing these multi-pass shaders.

Setup

Connect the Buffers

On the Shadertoywebsite, the previous examples only had one tab that contained code called ‘Image’.
This example has an ‘Image’ tab as well as a ‘Buf A’ tab. This means we’ll have to use 2 different
‘GLSL’ TOPs to represent each of the shader functions or buffers.

Start by creating those, and setting both TOPs to have the resolution 1280 by 720. Set up an ‘Info’
DAT for each. Rename the ‘GLSL’ TOPs to match each buffer so we can keep track of which one is
which.

Now we can copy the code from each of the buffers and paste it into the corresponding GLSL pixel
shaders.
 It should look like this:

¹³https://www.shadertoy.com/user/zolozulman

https://www.shadertoy.com/user/zolozulman
https://www.shadertoy.com/user/zolozulman

12 GLSL 129

Noise and Feedback TOP

‘iChannel0’ for ‘Image’ is ‘Buf A’. This means we can connect the output of our Buf_A ‘GLSL’ TOP,
to the first input of our Image ‘GLSL’ TOP. If we click on the Shadertoy tab for ‘Buf A’ we can see
that iChannel0 is a feedback of itself, Buffer A. Before we create that feedback loop, let’s work with
iChannel1. ‘iChannel1’ is a noise texture, so we can create a ‘Noise’ TOP with the same settings as
the previous example and connect it to second input of the Buf_A ‘GLSL’ TOP.

For the feedback loop, we can’t connect the output of a top to the input of itself without creating a
cook dependancy loop. Add a ‘Feedback’ TOP in the network. The ‘Feedback’ TOP needs an input so
we can connect the ‘Noise’ TOP to the input, set the ‘Target TOP’ parameter to Buf_A, then connect
the output to the first input of the Buf_A ‘GLSL’ TOP.

12 GLSL 130

Our network should look like this:

Ex2: Example 3: Noise and Feedback

Main Function and fragColor

We’ll go through the same process as the previous examples: changing mainImage to main, removing
the parameters inside the (), and declaring at the beginning:

layout(location = 0) out vec4 fragColor;

Next, go through both shaders and change all fragCoord references to gl_FragCoord. If we look at
the ‘Info’ DATs, we can see an error about data types. That’s because the main function call asked
for ‘vec2 fragCoord’ but the built in ‘gl_FragCoord’ is a vec4.

We’ll need to go through the main function, and wherever we find gl_FragCoord variable without
the .x or .y after it, we have to add .xy. (If you change it in the main function, it will be vec2’s that
are passed to the other functions, which is what we want). Remember, if the code is referencing ‘gl_-
FragCoord.x’ or ‘gl_FragCoord.y’ then we don’t need to change it, since the .x and .y are selecting
the float value from inside the vector already.

This example only has 1 instance in each main function that needs to be changed. The main function
for ‘Buf_A’ should look like this:

12 GLSL 131

1 void main()

2 {

3 float r = pow(iMouse.x-gl_FragCoord.x,2.0) + pow(iMouse.y-gl_FragCoord.y,2.0);

4 float max_r = pow(25.0,2.0);

5 vec4 c = vec4(0,0,0,1);

6 if(r <= max_r){

7 c = vec4(1,0,0,1);

8 }

9 vec2 uv = gl_FragCoord.xy / iResolution.xy;

10 if(iFrame < 5){

11 fragColor = texture2D(iChannel1, uv);

12 }else{

13 fragColor = c+rule(gl_FragCoord.xy);

14 }

15 }

and the main function for Image should look like this:

1 void main()

2 {

3 vec2 uv = gl_FragCoord.xy / iResolution.xy;

4 fragColor = neiborhood(gl_FragCoord.xy)*vec4(uv,0.5+0.5*sin(iGlobalTime),1.0)*4.;

5 }

Now we can go back up to the Info DAT and see what else needs to be changed.

iResolution, iGlobalTime, iMouse, and iFrame

Both Buf_A and Image require the declaration of iResolution and iGlobalTime, which we’ve done
before, so we’ll go ahead and add these to both. We need ‘ uniform vec3 Resolution;

uniform float iGlobalTime; ‘

at the top of both pixel shaders, and we’ll need to add both uniforms to the ‘Vectors 1’ page of the
‘GLSL’ TOP’s parameters.

If we look at the Info DAT for Buf_A, we see a new undefined variable: ‘iFrame’. This uniform is a
frame counter and we can either reference absTime.frame or me.time.frame, depending on whether
want the frame counter to loop with the timeline or not. For this example, we use absTime.frame as
the expression for the first value of the uniform, because we don’t want the looping of timeline to
effect the shader.

Next, we can copy and paste the same network we created for iMouse in the previous example, and
declare the uniform in the exact same way.

12 GLSL 132

iChannels

The only thing left to convert, is changing any references of iChannel0 to sTD2DInputs[0] and
iChannel1 to sTD2DInputs[1]. You can do this for both pixel shaders.

Both of your ‘GLSL’ TOPs should be working now, and your network might look something like
this:

Ex2: Example 3: Noise and Feedback

12 GLSL 133

12.7 GPU Particle Systems

12.7.1 Introduction

This tutorial will be focused on creating a GPU based particle system using TouchDesigner and
GLSL shaders. This has many benefits compared to using the built-in Particle SOP, because all the
computations inside of GLSL shader are performed on the GPU. GLSL shaders allow for the creation
of particles systems with extremely large particle counts (in the multi-millions and more), with
customized behaviour, that still compute quickly.

The process to achieve a particle system in GLSL can be slightly confusing at first, compared to just
creating a Particle SOP, but once you understand the basic principles behind the workflow, you will
have infinite freedom to experiment.

One concept to understand is that the GLSL material shader we’ll be using cannot create new points
out of thin air, so you have to feed it a set a starting points that correspond to the maximum number
of particles in your system. The amount of points feeding in determine the number of times our
material shader will compute and the shader code we write will be applied to every single particle
individually.

A second important concept to remember is that similar to any other type of shader, your code has
no reference to anything other than the current point it is processing. The shader will not have a
reference of the previous or next frame, and wont have any reference to any points that have been
computed on that same frame. All the shader code will need to be standalone and any referential
data will need to be fed to the shader as either a texture or value uniform. A uniform is a parameter
or value that you will pass to your shader code. This is important because the particles in a particle
systems need to know their previous position at last compute, so that they can then re-apply their
code to compute their new position on the next frame. In other OpenGL applications, you’d create
multiple texture buffers that you would ping-pong between reading and writing. In TouchDesigner,
this be solved by using a simple feedback loop.

To achieve the goal of creating a fully-functioning GPU particle system, we will break the particle
system into a number of incremental projects.

12.7.2 Moving Particles with Textures

Before getting started, this is an outline of the steps to this section:

1. Create a set of points that will be your initial positions
2. Add a point index to each point
3. Use a Noise TOP to create 1000 RGBA channels to use as point positions
4. Create a GLSL TOP to scale the values of the Noise TOP (will be built upon later after we

remove the noise)
5. Create a basic render setup

12 GLSL 134

6. Create a GLSL Mat that will hold all of the shader code for the particles
7. Create a basic pixel shader to shade all pixels white
8. Create a vertex shader with uniform inputs and correct outputs
9. Get the pointIndex, point position texture, and then the points per instance
10. Sample the Noise TOP texture and create UV co-ordinates
11. Move the incoming points from using all the above steps

The first thing we need to do is create a set of points that will be used by the GLSL MAT as the
particles. As mentioned earlier, a GLSL MAT cannot create particles on its own. It is simply a bit of
code that gets applied onto every point that is given to it. For the particle system this means that we
need a piece of geometry with 1000 points to have a particle system with 1000 points. Similarly if we
wanted a particle system with 1,000,000 points, we would need a piece of geometry with 1,000,000
points. To start simply, we’re going to generate 1000 points at the origin 0,0,0.

You can follow along with the explanation below by opening example ‘01_Moving_particles_with_-
textures.toe’.

Start by creating an ‘Add SOP’ and clicking the first checkbox in the parameter window to enable
‘Point 0’. The default values of ‘Point 0’ will work for this example. This creates our first point.
Connect the output of the ‘Add SOP’ to the first input of a ‘Copy SOP’. The ‘Copy SOP’ is used to
copy the first point created by the ‘Add SOP’, giving us more points for our particle system. Do this
by changing the ‘Number of Copies’ parameter of the ‘Copy SOP’ to 1000. Now we have 1000 points
to create a 1000 point particle system.

Connect the ouput of the ‘Copy SOP’ to the first input of another ‘Add SOP’. This ‘Add SOP’ will
be used to close the points and create a polygon. This is to create a polygon from our 1000 points
that can be converted into particles before entering the shader. To do this, in the new ‘Add SOP’
(which should be named ‘add2’ if you’re using the default operator names) go to the ‘Polygons’ tab
in the parameter window, and add an asterix (‘*’) to the first parameter named ‘Polygon’. Now we’ll
convert this 1000 point poygon into particles. Do this by connecting the output of the second ‘Add
SOP’ (‘add2’) to a ‘Convert SOP’. In the new ‘Convert SOP’, change the parameter named ‘Convert
To’ to have the value of ‘Particles’ and change the parameter named ‘Particle Type’ to ‘Render as
Point Sprites’. Creating point sprites allows us to use a single line of shader code to increase the
particle size later.

The final step before creating out material is to create an additional custom attribute using the point
indices. To do this, connect the output of the ‘Convert SOP’ to a ‘Point SOP’. Set the first ‘Custom
Attrib’ name to ‘pointIndex’. Select ‘float’ as the data type from the dropdown to the right of the
name field. Expand the ‘Value’ field, and in the first parameter field named ‘custom1val1’, enter the
Python script:

1 me.inputPoint.index

What this does is create a custom attribute on each point that we can use in the GLSL code. In this
case, we’ve taken the point index of each point, and assigned it to a float value named ‘pointIndex’.

12 GLSL 135

Now we’ve finished the first two steps, and we have 1000 particles that we will feed into the GLSL
MAT. This should look like this (Note: You will not see anything in your SOP viewers at this stage
unless you activate different display options to make points visible!):

The next thing we’re going to do is create some noise that we will use as our point positions. The
first thing to do is create a ‘Noise TOP’. In the ‘Common’ parameters, change the resolution to 1000
pixels by 1 pixels and the ‘Pixel Format’ to ‘32-bit float (RGBA)’. This gives us one pixel of noise
for every particle we have (1000 pixels of noise for 1000 particles). Changing the ‘Pixel Format’ to
‘32-bit float (RGBA)’ means that every pixel will have 32-bits per color channel, meaning a lot more
precise data can be held in each color channel. The next step is to set the ‘Monochrome’ parameter
to ‘off’. This returns a different noise value for each of the color channels, which will be translated
into different noise values for our X,Y,Z positions of the particles. You can then choose to animate
the noise however you like for the example, but the easiest is the add the following code to the
‘Translate’ parameter’s ‘tx’ value:

1 absTime.frame/100

This will transform the noise along the X axis, which will create a ribbon-effect on the initial particle
system. Next we’re going to create a ‘GLSL TOP’ that will allow us to have more fine tuned control
over the current noise values in each color channel. We’ll be able to scale those values, and then in
further sections, expand on the same shader to add more functionality. Connect the output of the
‘Noise TOP’ to the first input of a ‘GLSL TOP’. The ‘GLSL TOP’ is created by default with a ‘Text
DAT’ docked to it, with a default shader that outputs the color white. Edit the ‘Text DAT’, erase the
existing code, add the code below, and then save it:

1 out vec4 fragColor;

2

3 void main()

4 {

5 // sample the input

6 vec4 inPosition = texture(sTD2DInputs[0], vUV.st);

7

8 // scale each color channel (the XYZ of the vector) separately

9 vec4 outPosition = vec4(inPosition.x * 5.0 - 2.5, inPosition.y * 5.0 - 2.5, inPositi\

10 on.z * -5.0 - 20.0, 1.0);

12 GLSL 136

11

12 // output the new position

13 fragColor = outPosition;

14 }

We’ll quickly review the code above, but please refer to previous sections in this chapter. We first
setup the main output ‘fragColor’. We then sample the texture at the current UV. Because we setup
the ‘Noise TOP’ to have the same number of pixels as there are particles, we can then sample the
pixels on a one to one basis for each particle. After we sample the current pixel, we scale the R and
G channels (the X and Y of the vec4) by 5.0 and then translate them 2.5 units to the left and down of
the camera. We then we scale the B channel (the Z of the vec4) by -5.0, and then translate it 20 units
away from the camera to fit the whole particle system in the scene. We can leave the alpha channel
at 1.0 as we currently wont be using it.

After the scaling and translating, the ‘outPosition’ is assigned to the ‘fragColor’ output. If you’d like
to see the positions that the particles will be receiving, you can connect the ‘GLSL TOP’ to a ‘TOP
to CHOP’ operator and view each color channels values. This finishes step 3 and 4 of the item list.

Particle

Now create a basic render setup by adding a ‘Camera COMP’, a ‘Light COMP’, a ‘Geometry COMP’,
and a ‘Render TOP’. They can all be set to their default values for this exercise. Make sure to add an
‘In SOP’ to the ‘Geometry COMP’ so that you can input your set of points and turn on the render
and display flags on the ‘In SOP’ inside of the ‘Geometry COMP’. That will complete step 5.

12 GLSL 137

Particle 2

Next, create a ‘GLSL MAT’ operator, an ‘Info DAT’, and two ‘Text DAT’’s. Reference the ‘GLSL
MAT’ in the ‘Info DAT’’s ‘Operator’ parameter to help debug any errors. Name one of the ‘Text
DAT’’s ‘vertex’ and the other ‘pixel’. These will be the GLSL vertex and pixel shaders. Reference
‘vertex’ in the ‘GLSL MAT’’s ‘Vertex Shader’ parameter, and reference ‘pixel’ in the ‘GLSL MAT’’s
‘Pixel Shader’ parameter. Then we need to reference the ‘GLSL TOP’ we created. To do so, on the
‘Samplers 1’ parameter page of the ‘GLSL MAT’, add ‘sPointPosition’ to the first ‘Sampler Name’
parameter, and add the name of the noise texture to the first ‘TOP’ parameter. In the example file,
a ‘Null TOP’ named ‘null1’ was added after the ‘GLSL TOP’, and that is the operator name that is
referenced in the ‘TOP’ parameter. Be very careful with the ‘Sampler Name’ parameter, as this will
the name used in the code and if it is different than the code, you won’t see any outputs as you
won’t be able to reference the particle position. Finally, on the ‘Vectors 1’ page of the ‘GLSL MAT’,
add ‘uPointsPerInstance’ to the first ‘Uniform Name’, and enter ‘1.0 / 1000’ as the first value of the
parameter ‘value0x’. This last vector will be used in the shader to scale the point index from 0-1000
to the normalized 0.0 to 1.0 UV co-ordinate when sampling the point position noise texture. With
that setup complete, we can move from step 6 to step 7.

12 GLSL 138

From here, we will finish all the remaining steps in the GLSL shaders. First, edit ‘pixel’, the ‘Text
DAT’ we will use to hold the pixel shader, and enter the follow:

1 layout(location = 0) out vec4 fragColor;

2

3 void main()

4 {

5 // shade pixel white

6 fragColor = vec4(1.0, 1.0, 1.0, 1.0);

7 }

This is a very basic pixel shader as we’ve seen earlier in the chapter, and all it does is shade any
incoming pixels white. This completes step 7.

Edit ‘vertex’, the ‘Text DAT’ we will use to hold the vertex shader and enter the following:

1 // setup inputs

2 uniform sampler2D sPointPosition;

3 uniform float uPointsPerInstance;

4 in float pointIndex;

5

6 void main()

7 {

8 // create the uv from point index

9 vec2 uv;

10 uv.x = (pointIndex * uPointsPerInstance) + (uPointsPerInstance * 0.5);

12 GLSL 139

11 uv.y = 0.5;

12

13 // sample the noise texture using the uv

14 vec4 newPosition = texture(sPointPosition, uv);

15

16 // set point size to your liking

17 gl_PointSize = 1.0;

18

19 // move point from object space to screen space and output to gl_Position

20 vec4 worldSpaceVert = TDDeform(newPosition);

21 gl_Position = TDWorldToProj(worldSpaceVert);

22 }

Once you enter and save that code, you will see the particle system creating a ribbon-effect using
the generated noise. Let’s go through this vertex shader.

The first 4 lines setup the noise texture as a ‘uniform sampler2D’, the ‘uPointsPerInstance’ value as
a ‘uniform float’, and the incoming point index attribute as an incoming float:

1 // setup inputs

2 uniform sampler2D sPointPosition;

3 uniform float uPointsPerInstance;

4 in float pointIndex;

The next few lines in the code create the UV to use when sampling the noise texture. To create the X
location of the UV, we first take the incoming point index and multiply it by ‘uPointsPerInstance’,
which is 1 / 1000. This gives us the location to sample from the 0.0 to 1.0 range. A key thing to
remember when creating UV’s manually is that the UV co-ordinates have infinite precision, so a
UV of 0 along the X axis isn’t the first pixel, it is the left edge of the first pixel, which will cause
visual errors as the shader will then interpolate 50\% of the first pixel and 50\% of whatever is to
the left of the first pixel (depending on the repeat parameters set). Because of this, we need to
offset our sample by half of the sample step ‘uPointsPerInstance’, which is why we add the result
of ‘uPointsPerInstance’ multiplied by 0.5 to the location we calculated by multiplying ‘pointIndex’
and ‘uPointsPerInstance’.

To recap that: 1. We need to convert the point index from 0 - 1000 to the UV co-ordinates 0.0 to 1.0

1. Do that by multiplying the point index by the result of 1 / 1000, which gives us our sample step
along the 0.0 to 1.0 range

2. Then add half of ‘uPointsPerInstance’ value (which is half of a single sample step) to offset our
sampling so that we are samlping the middle of each pixel and not the left most edge

Finally, because we know the texture is only 1 pixel tall, we can set ‘uv.y’ to 0.5 (again, because we
don’t want to sample the edge of the pixel, we want to sample the midle of it).

12 GLSL 140

1 // create the uv from point index

2 vec2 uv;

3 uv.x = (pointIndex * uPointsPerInstance) + (uPointsPerInstance * 0.5);

4 uv.y = 0.5;

The next thing to do is use the UV co-ordinates to sample the noise texture:

1 // sample the noise texture using the uv

2 vec4 newPosition = texture(sPointPosition, uv);

Before we finish assigning the new point position, we use this handy piece of GLSL code to quickly
adjust the size of the particles. We’re able to do this because earlier, we used the ‘Convert SOP’ to
set the particle types to sprites (as this code only works with sprites).

1 // set point size to your liking

2 gl_PointSize = 1.0;

Finally, the code below takes our ‘newPosition’ values from object space, uses ‘TDDeform()’ to
move them to world space. Then ‘TDWorldToProj()’ is used to convert the world space point to
screen space points, which are assigned to ‘gl_Position’, which is the built-in output for each points
position.

1 // move point from object space to screen space and output to gl_Position

2 vec4 worldSpaceVert = TDDeform(newPosition);

3 gl_Position = TDWorldToProj(camSpaceVert);

With that, we’ve finished the first goal, which was to move particles with textures. Although
this may not seem like a traditional particle system, these steps lay the foundation for the next
implementations.

12 GLSL 141

Particles final

12.7.3 Using Source Geometry

Now that we have a basic grasp onmoving particles using textures, we can add in a piece of geometry
and use its positions as starting positions for our particle system. In this exercise, we’ll replace our
‘Add SOP’ with a ‘Grid SOP’ (with the same point count) and add some noise to each particle
position. These are the steps we will follow:

1. Create a texture from the point position data of ‘Grid SOP’
2. Use this texture to position our particles in the point positions of the ‘Grid SOP’
3. Apply the previous noise texture on the new positions to create an effected grid

It is best to read this text while examing the example project ‘02_Source_geometry.toe’, because I
will refer to certain operators by their names in the example project.

The first step is to create a texture from the point position data of the ‘Grid SOP’. The source of
point positions in the first example was an ‘Add SOP’, a ‘Copy SOP’, and another ‘Add SOP’. Start
by removing these and replacing them with a ‘Grid SOP’ with the ‘Rows’ parameter set to 100 and
the ‘Columns’ parameter set to 10. This combination of rows and columns will create a grid with
the same number of points as our previous example.

The next step is to get all the point positions from the ‘Grid SOP’ using a ‘SOP to CHOP’. Create
a ‘SOP to CHOP’ and set the ‘SOP’ parameter to the name of the ‘Grid SOP’ which in this case is
‘grid1’.

This creates a CHOP with all the point positions as separate channels. We can translate these XYZ
channels into RGB channels of a texture by using the ‘CHOP to TOP’. Create a ‘CHOP to TOP’ and

12 GLSL 142

set the ‘CHOP’ parameter to the name of the ‘SOP to CHOP’, which in this example is ‘sopto1’. Make
sure the set the ‘Pixel Format’ to ‘32-bit float (RGBA)’ in the ‘Common’ settings of the ‘CHOP to
TOP’, as we will be feeding this into the GLSL shader and want it to continue outputting a 32-bit
texture. Connect the output of the ‘CHOP to TOP’ to the second input of ‘glsl2’, the ‘GLSL TOP’ we
were using in the last example to scale the noise values.

This complete the first step of the example.

Now that we have a texture, let’s make a few additions to our shader. Below is our final shader from
the previous example:

1 out vec4 fragColor;

2

3 void main()

4 {

5 // sample the input

6 vec4 inPosition = texture(sTD2DInputs[0], vUV.st);

7

8 // scale each color channel (the XYZ of the vector) separately

9 vec4 outPosition = vec4(inPosition.x * 5.0 - 2.5, inPosition.y * 5.0 - 2.5, inPositi\

10 on.z * -5.0 - 20.0, 1.0);

11

12 // output the new position

13 fragColor = outPosition;

14 }

12 GLSL 143

We’ll start by adding a line to sample the new texture with the ‘Grid SOP’ position data. Insert this
line after line 7 (we will review the full code at the end):

1 vec4 gridPosition = texture(sTD2DInputs[1], vUV.st);

This creates a new 4-part vector with our XYZ data that is connected to the second input (remember
the inputs are indexed starting at 0). If you’d like to visualize this very quickly, change the last line
temporarily to:

1 fragColor = gridPosition;

This will move all of the particles to the static points on the ‘Grid SOP’. Before continuing, make
sure the change the final line back to:

1 fragColor = outPosition;

Now we’re going to focus on this line:

1 vec4 outPosition = vec4(inPosition.x * 5.0 - 2.5, inPosition.y * 5.0 - 2.5, inPositi\

2 on.z * -5.0 - 20.0, 1.0);

Previously, we were taking the noise values, scaling them to make them interesting, then offsetting
them to sit nicely in the camera’s view. Our goal now is to take the incoming grid positions, and
effect them with the noise. To do so, we can use a line like this:

1 vec4 outPosition = vec4(gridPosition.x + (inPosition.x * 0.1), gridPosition.y + (inP\

2 osition.y * 0.1), gridPosition.z + inPosition.z, 1.0);

Inside each part of the ‘vec4’, we’re taking the ‘Grid SOP’ XYZ and adding to it the XYZ of the noise
texture. The only extra thing we’ve added here, is that before adding the X and Y values of the noise,
we’re scaling them down, as it makes it a bit easier to see the ‘Grid SOP’ shape in the render. The
full shader code should look like this:

12 GLSL 144

1 out vec4 fragColor;

2

3 void main()

4 {

5 // sample the inputs

6 vec4 inPosition = texture(sTD2DInputs[0], vUV.st);

7 vec4 gridPosition = texture(sTD2DInputs[1], vUV.st);

8

9 // add scaled noise texture values to the grid position values

10 vec4 outPosition = vec4(gridPosition.x + (inPosition.x * 0.1), gridPosition.y + (inP\

11 osition.y * 0.1), gridPosition.z + inPosition.z, 1.0);

12

13 // output the new position

14 fragColor = outPosition;

15 }

Once you save, you should the columns of the grid being effected by the noise texture.

Feel free to experiment by replacing the ‘Grid SOP’ with another geometry with 1000 points.

12.7.4 Adding Velocity

In this section, we’re going to remove the random noise that is driving the particles and add a
constant velocity. We won’t spend much time going into depth on some of the physics concepts, if
they’re new to you, we recommend either:

12 GLSL 145

• Nature of Code¹⁴ which is a great Processing book about modeling natural forces
• Khan Academy¹⁵ for learning the physics concepts on their own

We’re going to make some simple UI controls that will allow us to add a constant velocity in XYZ
space to all the particles. How the particles are controlled is important because data from the last
frame is added to the current frame to find the new positions. Think about a particle traveling over
a few frames. For every frame the particle needs to know where it was the last frame so it can add
the velocity and calculate it’s new position. In the previous examples, the noise only ever had the
current frame worth of data.

The main element we’re going to add in this example is a feedback loop so that we can continuously
feed in the last frame’s data, update the texture with new positions, then feed it back as the input.

You can follow along with example 01_adding_velocity.toe in the folder TouchDesigner Example

Files/12.7.4.

Start by deleting the ‘Noise TOP’ and unplugging the chopto1 from the ‘GLSL TOP’. Follow these
steps:

1. Create a ‘Feedback TOP’
2. Connect the output of chopto1 to the input of the ‘Feedback TOP’
3. Connect the output of the ‘Feedback TOP’ to the first input of the ‘GLSL TOP’
4. Set the ‘Target TOP’ parameter of the ‘Feedback TOP’ to the name of the ‘GLSL TOP’, in the

example project this is glsl2

This should look like the image below:

¹⁴http://natureofcode.com/
¹⁵https://www.khanacademy.org/science/physics

http://natureofcode.com/
https://www.khanacademy.org/science/physics
http://natureofcode.com/
https://www.khanacademy.org/science/physics

12 GLSL 146

Now let’s create a new uniform on the ‘Vectors 1’ page of the ‘GLSL TOP’ parameters. Name it it
uVel and leave the values at 0.

You can see the final shader if you skip down a little bit, but here are the individual changes
explained.

Add a line to get our new uniform value at the start of the shader:

1 uniform vec3 uVel;

We’re going to change the name of our vec4 output from fragColor to oPosition, which is a short
name for ‘output position’.

Then, instead of sampling noise positions and grid positions, we’re going to sample the new input
positions that are fed back to the shader from the ‘Feedback TOP’:

1 vec4 pos = texture(sTD2DInputs[0], vUV.st);

We will add our new velocity value to the previous point position:

1 pos.xyz += uVel.xyz;

And finally, output the new point position:

1 oPosition = pos;

The final shader for this example will look like this:

1 uniform vec3 uVel;

2

3 out vec4 oPosition;

4

5 void main()

6 {

7 // get input positions

8 vec4 pos = texture(sTD2DInputs[0], vUV.st);

9

10 // add our single velocity values to every point position

11 pos.xyz += uVel.xyz;

12

13 // output the new point position

14 oPosition = pos;

15

16 }

12 GLSL 147

The final elements that we need are an interface to change the uVel uniform parameter, and a button
to reset the particles by resetting the feedback.

In the example, we created a 2D slider for the XY velocity of the particles and a slider for the Z
velocity. You can experiment with other kinds of sliders and buttons, as long as you reference the
channel values in the first three values of the uVel uniform on the ‘Vectors 1’ page of the ‘GLSL
TOP’ parameters.

The script you’ll add to your reset button will vary depending on the type of interface you create,
but there will be one line that should always be at the end of it. This line will pulse the ‘Reset’
parameter of the ‘Feedback TOP’, which will then clear the feedback and pass through the original
point positions of the grid again. In the example reset script, the UI elements are all reset to a 0
position, and then the ‘Feedback TOP’ is reset.

12.7.5 Random Velocity

Now we have the most basic particle system imaginable: a system where all the particles move
with the same constant velocity. In this section we’re going to give each of the points their own
random velocity instead of controlling themwith UI elements. This will create the effect of a particle
explosion from the ‘Grid SOP’.

Start by removing the uVel uniform from the ‘GLSL TOP’ and clearing the parameters that reference
our UI elements. Your Vectors 1 parameter page of the ‘GLSL TOP’ should be clear.

Next, delete the sliders/UI elements created to control the particle velocity but do not delete the reset
button. We will continue to use the reset button in this example.

Depending on what kind of elements you had created to control the particles, we’ll need to remove
any of the Python code associated with them from the ‘Panel Execute DAT’ connected to the reset
button. Inside the def offToOn callback you should only have a line that resets the ‘Feedback TOP’:

1 op('feedback1').par.resetpulse.pulse()

The final element we need in the network is a ‘Noise TOP’ with a resolution of 1000 pixels by 1
pixel, to match the resolution of our ‘CHOP to TOP’. Set the ‘Noise TOP’ type to Random (GPU).
Turn of the Monochrome toggle. Set the Amplitude to 0.5, and set the Offset to 0.5. Changing these
two parameters is an easy way to move the noise values from the range of 0 and 1 with a floor of 0
to a range of 0 and 1 with a 0.5 center.

To visualize this, it is a move from this kind of noise:

12 GLSL 148

To this kind of noise:

12 GLSL 149

With these parameters set, plug the ‘Noise TOP’ into the second input of the ‘GLSL TOP’.

Your network should now look like this:

12 GLSL 150

In our shader, we only have to make a few changes.

After the line where we sample the input positions from the grid, we’ll add a line that samples our
noise texture and creates a new vec4 named velocity:

1 vec4 velocity = texture(sTD2DInputs[1], vUV.st) * 2 - 1;

This should look very familiar by now. The * 2 - 1 at the end is some simple math that changes
the noise range of 0 and 1 to a range of -1 and 1.

Now in the next line of code, instead of adding the uVel uniform, we’ll add the new velocity vector:

1 pos.xyz += velocity.xyz;

Now you can click your reset button and watch the particle system explode away from the ‘Grid
SOP’ points. Experiment with the ‘Noise TOP’ settings and the ranging math in the shader to see
how you can create different results.

12 GLSL 151

12.7 What Next?

This chapter should have helped unravel a bit of the introductory mysteries of GLSL without getting
unnecessarily technical.

If you’d like to continue learning GLSL to experiment with more complex 3D scenes and material
shaders, or with more complex 2D compositing tools and generative textures, below are some
resources:

1. OpenGL Main reference page: http://www.opengl.org/wiki/Main_Page¹⁶
2. OpenGL General information: http://www.opengl.org/wiki/General_OpenGL¹⁷
3. Derivative Wiki: http://www.derivative.ca/wiki088/index.php?title=Glsl¹⁸
4. Shader Toy: https://www.shadertoy.com/¹⁹

¹⁶http://www.opengl.org/wiki/Main_Page
¹⁷http://www.opengl.org/wiki/General_OpenGL
¹⁸http://www.derivative.ca/wiki088/index.php?title=Glsl
¹⁹https://www.shadertoy.com/

http://www.opengl.org/wiki/Main_Page
http://www.opengl.org/wiki/General_OpenGL
http://www.derivative.ca/wiki088/index.php?title=Glsl
https://www.shadertoy.com/
http://www.opengl.org/wiki/Main_Page
http://www.opengl.org/wiki/General_OpenGL
http://www.derivative.ca/wiki088/index.php?title=Glsl
https://www.shadertoy.com/

Credits
In order of contribution:

Elburz Sorkhabi - original author & creator, editor

Byron Wong - management & operations

Matthew Hedlin - author chapter 12.6 - Importing Shadertoy, proof-reading & editing, conversion
to GitBook format

Greg Hermanovic - foreword

Malcolm Bechard - proof-reading & editing

Ben Voigt - proof-reading & editing

	Table of Contents
	Introduction
	Foreword
	Foreword by Author
	What is TouchDesigner?
	Accessing the book
	Compiling the book
	Attribution and Licensing

	1 Basics
	1.1 Signal Flow and Wiring
	1.2 Creating Operators
	1.3 Mouse and Keyboard Navigation
	1.4 Networks and Paths
	1.5 Using an External Text Editor
	1.6 Help

	2 User Interface
	2.1 Parameter Window
	2.2 Parameters
	2.3 Transport Controls
	2.4 Timeline Settings
	2.5 Panes
	2.6 Palette Browser
	2.7 Search Dialog
	2.8 Realtime Flag
	2.9 Useful Shortcuts

	3 TOPs
	3.1 Introduction
	3.2 Movie In TOP
	3.3 Preloading Movies
	3.4 Null TOPs and Select TOPs
	3.5 Codecs

	4 CHOPs
	4.1 Introduction
	4.2 Communication Methods
	4.3 Audio Inputs and Outputs
	4.4 Sample Rates
	4.5 Time Slicing
	4.6 Common Channel Operators

	5 DATs
	5.1 Introduction
	5.2 Communication Methods

	6 SOPs
	6.1 Introduction
	6.2 Rendering

	7 COMPs
	7.1 Introduction
	7.2 Window COMP
	7.3 User Interface Components

	8 MATs
	8.1 Introduction
	8.2 Phong, GLSL, and Point Sprite Materials
	8.3 UV Maps

	9 Python
	9.1 Introduction
	9.2 Textport

	10 Outputting Content for Deployment and Performance
	10.1 Perform Mode
	10.2 Performing with the Network Editor
	10.3 Creating an Output Raster
	10.4 Displays, Tearing, and Stuttering
	10.5 Edge Blending

	11 Optimization
	11.1 Introduction
	11.2 Finding the Bottleneck
	11.3 Using Performance Monitor
	11.4 Operator Cooking
	11.5 Resolution
	11.6 GPU Memory Fragmentation
	11.7 Windows System Processes

	12 GLSL
	12.1 Introduction
	12.2 Types of Shaders and Rendering Pipeline
	12.3 Debugging
	12.4 Shaders in 3D
	12.5 Shaders in 2D
	12.6 Importing Shaders from Shadertoy
	12.7 GPU Particle Systems
	12.7 What Next?

	Credits

